
Short-lived Datacenters

Michael Wawrzoniak1, Ingo Müller1, Rodrigo Bruno2, Ana Klimovic1, Gustavo Alonso1

1Systems Group, Dept. of Computer Science, ETH Zürich
{michal.wawrzoniak,ingo.mueller,aklimovic,alonso}@inf.ethz.ch

2 INESC-ID / Técnico, ULisboa Lisbon, Portugal
rodrigo.bruno@tecnico.ulisboa.pt

Abstract
Serverless platforms have attracted attention due to their
promise of elasticity, low cost, and fast deployment. Instead
of using a fixed virtual machine (VM) infrastructure, which
can incur considerable costs to operate and run, serverless
platforms support short computations, triggered on demand,
with cost proportional to fine-grain function execution time.
However, serverless platforms offer a restricted execution en-
vironment. For example, functions have limited execution
times, limited resources, and no support for networking be-
tween functions. In this paper, we explore what it takes to
treat serverless platforms as short-lived, general purpose data-
centers which can execute unmodified existing applications.
As a first step in this quest, we have developed Boxer, a
system providing an execution environment on top of ex-
isting functions-as-a-service platforms that allows users to
seamlessly migrate conventional VM-based cloud services
to serverless platforms. Boxer allows generic applications to
benefit from the fine-grain elasticity of serverless platforms
without having to modify applications to adopt a restrictive
event-triggered programming model or orchestrate auxiliary
systems for data communication. We implement Boxer on top
of AWS Lambda and extend it to transparently provide stan-
dard network interfaces. We describe its implementation and
demonstrate how it can be used to run off-the-shelf cloud ap-
plications with a degree of fine-grained elasticity not available
on traditional VM-based platforms.

1 Introduction

Serverless computing platforms such as AWS Lambda [4],
Google Cloud Functions [13], and Azure Functions [23] offer
highly elastic computing and fine-grained resource billing (as
low as milliseconds [5]), while raising the level of abstraction
for user interaction with the cloud [27]. Although serverless
platforms cost more per hour than resources on virtual ma-
chines [8], the fine-grained cost model still makes serverless
computing cost-effective for jobs with short execution times
and sporadic invocation patterns [11, 24, 25].

Today’s serverless offerings are, however, impractical for
a wide variety of applications [10, 14, 24, 25, 31]. Current
systems limit the execution time of tasks; some restrict the
rate at which functions can be created [23] or the number of
concurrent functions [22]; and none of the platforms support
heterogeneous hardware [6]. However, the most critical limi-
tation is the lack of direct communication among functions
which has wide-ranging implications for application design
and performance. Current attempts at generalizing commer-
cial serverless platforms implement inter-function communi-
cation by exchanging data through remote storage systems
such as Amazon S3, Anna, and Pocket [3, 20, 35]. Doing
so adds considerable overhead and also increases cost [24,
25]. For instance, parallelism can be used to hide the latency
overhead of exchanging data through Amazon S3, with Per-
ron et al. reporting an S3 latency of 14ms to read 256KB of
data [25]. The consequences are higher costs (each S3 GET
and PUT request incurs cost) and a more complex system
design which requires parallel reads to a storage system and
additional network round trip times.

In this paper, we explore how serverless computing plat-
forms can be leveraged to run generic applications. Our goal
is to provide a general-purpose solution that turns a serverless
function into the equivalent of the Linux execution environ-
ment that most cloud applications expect. We identify net-
working as a key challenge, since generic cloud applications
rely on direct communication between nodes while server-
less platforms do not support it. We propose Boxer, a system
that provides a familiar Linux execution environment on top
of functions-as-a-service (FaaS) platforms. Boxer exposes a
Linux socket API for networking inside functions and sup-
ports direct, transparent, TCP/IP communication. Boxer uses
a NAT-punching technique to provide bi-directional TCP/IP
communication to functions without the external proxies re-
quired by existing work [10, 11, 31] or specializing to a single
use case [32].

In addition to the design of Boxer, we make several contri-
butions. First, we demonstrate that Boxer can run applications
that require inter-function communication on AWS Lambda

1



and achieve performance comparable to using similarly sized
VMs (§ 5). Second, since Boxer provides the application with
a standard network interface, we show in § 6 that it supports
running unmodified applications, such as the DeathStarBench
microservice benchmark suite[12]. Third, we show that Boxer
allows cloud users to leverage the fine-grain elasticity of
serverless platforms to quickly absorb load bursts in applica-
tions and optimize cost by migrating applications seamlessly
between VM and serverless environments depending on the
load pattern (§ 7). Through these capabilities, Boxer opens
up many new opportunities for serverless computing (§ 8.1).
By providing conventional networking capabilities using stan-
dard interfaces, Boxer enables a general-purpose, on-demand,
short-lived datacenter that can run unmodified, distributed ap-
plications and is not limited to trivially parallel jobs. We have
implemented and evaluated Boxer on top of AWS Lambda
and we plan on making it available as open source.

2 Background

Leveraging serverless platforms as short-lived, general pur-
pose datacenters requires bridging the gap between the re-
quirements of distributed applications and the functionality
provided by today’s serverless platforms. To provide the nec-
essary background, we describe the execution environment of
serverless platforms, focusing on AWS Lambda as the most
advanced serverless platform in the market.

2.1 Serverless Execution Environments
Packaging and invoking functions: To run a serverless func-
tion, users register the function and specify its deployment
package, invocation triggers, and memory resource allocation.
For the deployment package, AWS Lambda allows users to
supply source code or application binaries. AWS Lambda
also supports container images of up to 10 GB in size [7].
In addition to the deployment package, users also configure
events to trigger function invocations. Examples of event
sources include storage and message queue service notifi-
cations, timers, and HTTP requests. Finally, users specify a
memory requirement for the function. The cloud provider
allocates CPU resources for the function proportionally to
its memory allocation. As of October 2021, AWS Lambda
supports functions with 128 MB to 10 GB of memory and
up to 6 vCPUs (vitual CPUs). Every invocation of a function
is executed in its own isolated environment, running a ker-
nel derived from Linux 4.14 and a file system image based
on the Amazon Linux [2] distribution. Serverless functions
execute as unprivileged userspace processes with restricted
capabilities in a secure and isolated runtime environment.

Dynamically loading dependencies: When a function
process is invoked and begins executing, a dynamic linker in
the AWS Lambda execution environment loads the shared
libraries required by the executable. The dynamic linker uses

a set of rules to locate the objects that have to be loaded
to satisfy the dependency list. It is also possible to direct
the dynamic linker to load additional shared libraries before
any other shared libraries are loaded. Objects and functions
exported by the additional libraries can be then used by the
executable. If the exported names are the same as the exported
names from other libraries loaded later, the executable will
use the function or objects from the additional library that is
loaded before others. This provides a mechanism to intercept
function calls to dynamically linked system libraries such as
libc. We use this mechanism to embed Boxer’s interposition
library in the system when deploying an application so that
network and other operations are selectively routed through
Boxer.

2.2 Serverless Networking

AWS Lambda functions are assigned private IP addresses
from private subnets. They are able to send network traffic to
external addresses as the traffic from a function to the pub-
lic internet is routed through Network Address Translation
(NAT) gateways. A NAT gateway forwards the traffic to the
destination address but changes the source address to a pub-
licly routable address available to the gateway. The assigned
mapping between the internal source address and the exter-
nally routable source address is stored in the gateway state.
As the network traffic arrives at the destination host, its source
address is the address assigned by the NAT gateway. When
the destination host sends traffic back to the source address it
received the traffic from, the traffic arrives back at the gateway
having the previously assigned mapping to an internal desti-
nation address. Based on the mapping, the gateway modifies
the destination address of the traffic and routes it towards the
original private source address assigned to the function. For
the function, the traffic appears to come directly from the
destination host. This results in AWS Lambda functions be-
ing able to transparently access external services and internet
resources.

Serverless functions cannot accept connections initiated
by external sources or by other functions. AWS Lambda re-
stricts the incoming network traffic for functions to traffic
that directly corresponds to previously outgoing traffic. Even
if an external host learned the private IP address assigned
to a function, it could not route traffic to it. Network traffic
destined for an internal address must be routed through an
external gateway that will then appropriately route it through
the private network. If the external gateway is a NAT, then just
knowing the route is also not sufficient. A NAT gateway will
drop any incoming traffic not matching its previously config-
ured address translation map. Hence, in the case of TCP, a
function process can initiate a connection to an external ad-
dress and then receive traffic on that connection but it cannot
accept new incoming TCP connections.

2



3 Related Work

3.1 Communication Through Proxies

Prior work has circumvented the lack of networking by us-
ing proxy or coordinator servers to initiate connections and
relay messages between serverless functions. Fouladi et al.
proposed mu, a framework for orchestrating parallel com-
putation and communication across serverless workers, as
part of their work on ExCamera [11]. The mu framework
uses a long-lived coordinator and rendezvous server for inter-
function communication. Workers running short-lived lambda
function invocations establish a connection with the mu coor-
dinator, which can instruct workers to communicate between
each other through a rendezvous server. The mu rendezvous
server buffers and relays messages from source to destination
lambdas. The authors point out that the rendezvous server’s
connection to workers can become a bottleneck and recom-
mend implementing direct communication between lambdas
via a hole-punching NAT-traversal strategy, but leave this as
future work. In a similar approach, Wang et al. propose us-
ing serverless functions to build InfiniCache, a distributed
in-memory cache [31] that uses a proxy to which functions
connect and is used to relay messages to and between server-
less functions. A number of other projects, e.g. [10], use a
similar approach to enable communication.

Using an fixed infrastructure service that runs parallel to
the serverless functions defeats some of purpose of using
serverless. Initializing the supporting infrastructure and the
proxy/coordinator add overheads, causing starting delays that
serverless purportedly removes. Leaving the infrastructure
running incurs costs and requires the maintenance, again de-
feating one of the main goals of serverless.

We are not the first one to point out the limitations of
existing approaches. There was an open-source Serverless
Networking SDK that allowed functions to communicate over
UDT [36], a UDP-based protocol (the project is no longer
active). It relied on a custom API instead of supporting con-
ventional sockets [28]. Solutions have also been proposed
to address the networking overhead of starting thousands of
functions at the same time [30] or the overhead of sustain-
ing many RPC calls [18]. These solution propose alternative
architectures to current commercial deployments and rely
on conventional containers or VMs to avoid the limitations
of serverless system. In contrast, we are interested in solv-
ing these same issues but using the infrastructure provided
by cloud vendors. It has been claimed that, in such settings,
adding networking makes no sense [27] because it would
remove the ability of the cloud vendor to optimize the de-
ployment. As Boxer shows, it is possible to add networking
to FaaS without affecting any of its underlying properties or
restricting the possibility of optimizing the deployment.

3.2 Communication Through Storage

Applications that require to move larger amounts of data typ-
ically resort to an alternative design. Instead of using a co-
ordinator or a proxy, they use ephemeral storage systems,
such as Pocket [20], Anna [34], and Locus [26], to improve
the performance of inter-function communication through
remote storage. In such systems, communication is imple-
mented by writing and reading to a specialized storage layer
built for serverless functions. In other cases, rather than using
a specially built systems, Amazon’s S3 is used directly. For
instance, Lambada [24] and Starling [25] are query analyti-
cal systems that implement exchange operators as read/write
patterns on Amazon S3 as a way to allow functions running
parts of a query to exchange data. In both cases, a relatively
complex design is needed to deal with the overhead of com-
munication through storage.

While communication through storage solves the problem,
it has both a high cost both monetary and in performance.
Writing and reading to storage services like S3 is not for
free. Implementing communication through storage induces a
large amount or read and writes, increasing the cost of using
serverless. Performance-wise, using storage to exchange data
not only suffers from the higher latency of storage but also
adds communication rounds to the exchange. This overhead
becomes significantly visible since now AWS Lambda is
charged per millisecond and the observed delay is potentially
in the order of tens of milliseconds [25, 32].

3.3 General Purpose Serverless

It has been noted that serverless platforms can be used as a
supercomputer on-demand to run highly parallel jobs as it is
done in gg, a framework and collection of command line tools
to help users run everyday applications – such as software
compilation and unit tests – seamlessly on serverless plat-
forms [10]. Users express their applications as a composition
of lightweight, functional containers using gg’s intermediate
representation, while the framework takes care of instantiat-
ing containers as serverless functions, loading dependencies,
and dealing with function failures and stragglers. This idea
of a supercomputer-by-the-second also appears in previous
wok of the same authors[11]. Recently, serverless has been
presented as the next generation of cloud computing, reinforc-
ing the idea of general purpose use instead of the narrow uses
cases considered today [27].

In this paper we pursue the same notion but focus on gen-
eralizing serverless to support unmodified, distributed appli-
cations. We aim to turn serverless into a true sub-second dat-
acenter that can be used by off-the-shelf applications rather
than just for trivially parallel jobs.

3



Perforator Perforator Perforator

A: 18.221.123.22
B: 3.17.204.46
C: 18.218.116.207

Control Path Data Path

A B C

NAT NAT NAT

Seed

Figure 1: Networked serverless functions use a Seed process
to connect functions during the startup. After the startup phase,
the seed process is no longer needed.

4 Boxer

As a first step towards exploring the notion of the sub-second
datacenter, we have developed Boxer, a system that trans-
parently enables networking between serverless functions.
We choose to focus on datacenter applications that use the
conventional socket networking API in Linux and the TCP
networking protocol, as this represents a large class of data-
center applications.

4.1 System Overview

Boxer uses two key mechanisms to allow external hosts to
initiate connections with serverless functions and functions
to communicate with each other transparently.

First, to allow incoming traffic to be routed to a serverless
function, Boxer uses NAT punching techniques that resem-
ble those proposed in the past for generic NAT services [9,
17]. However, our solution is tailored to the AWS Lambda
environment and uses functionality specific to AWS Lambda.
Through these techniques, Boxer provides the sending host
with the appropriate gateway address and configures the gate-
way with the appropriate state for the traffic to traverse the
NAT and arrive at the private IP address of the destination
function. Second, to make the NAT traversal transparent to
applications, Boxer intercepts some dynamically linked libc
library function calls by leveraging the dynamic linker that is
invoked in the Linux-based AWS Lambda execution environ-
ment. For example, when a serverless function calls connect,
the Boxer connect implementation will execute instead of the
original libc implementation – this allows Boxer to implement
NAT traversal without requiring application modifications.

Boxer’s networking environment consists of 1) Boxer pro-
cesses running inside each serverless function and each node
that needs to initiate connections to a function, and 2) a Boxer
‘seed’ process (Figure 1), which runs on an externally routable
host and is used for network initialization. Each Boxer process
consists of a networking service to establishes TCP connec-
tions, a coordination service to send and receive network

B0

B1

Bnew

Bseed

NAT

F0

F1

Fnew

VM

1

2

2

2

3
3

Figure 2: New Boxer node Bnew in function Fnew joins al-
ready connected nodes B0, B1 running in functions F0,F1 and
seed node Bseed running in a virtual machine V M. Solid lines
represent control connections, dashed lines messages sent,
numerical labels the stage of the join protocol when message
is sent or connection is established.

membership updates from other Boxer processes, and a trans-
parent execution service to selectively intercept library calls
and run unmodified Linux TCP sockets-based applications.
We describe each of these services in more detail below.

Boxer is packaged as a Linux executable and a shared li-
brary object, as we describe in Section 4.6. Users include the
Boxer package in each function deployment package when
registering functions on the cloud platform. This allows a
Boxer process to start executing in the serverless function
environment when the function is invoked. Users are also
responsible for spinning up a Boxer seed process on an exter-
nally routable host, such as an EC2 instance.

4.2 Networking Service

The networking service in Boxer provides TCP connectivity
and manages NAT configuration. We start by describing how
nodes join the network and then describe how TCP connec-
tions are established.

Joining the network: The Boxer seed process is respon-
sible for network initialization (Figure 2). The user sets a
parameter to specify the address of the seed process. The
seed can be any other Boxer process that is reachable by the
process being started. Since functions cannot establish con-
nections to other functions before Boxer is initialized, the
seed process must be running outside of AWS Lambda. We
currently run it in an AWS EC2 instance, but it could be run
anywhere routable from Boxer processes that are attempting
to join the network.

The seed process performs three functions. First, it informs
the connecting process of its observed external address. If
the process is connecting from AWS Lambda, this is the
external address assigned by the NAT gateway used. Second,
the coordinator service of the seed process informs all other

4



P1

Perforator

P0

Perforator

1

2 3
4

5

6

NAT

Function0 Function1

Figure 3: Opening TCP connection by process P0 to process
P1 running in a remote function.

Boxer processes in the network of a new node, and it supplies
the joining process with a list of all other nodes that already
joined. Third, the seed process ensures that each external
address only exists once. This deals with the fact that two
concurrent function invocations may be handled by the same
machine behind the same NAT gateway and would thus be
indistinguishable. If that happens, all but the first node with
a given address are rejected from joining the network, so the
corresponding Boxer process exits immediately and all of the
function resources are released.

When a new node joins the network, its coordinator ser-
vice learns the addresses of all other nodes in the network.
Concurrently, coordination services of all other nodes in the
network are updated with the address of the newly joined
node. The Boxer networking service of every node listens to
membership updates and treats these events as signals that it
is time to establish direct control connections with the new
node. Control connections are used to exchange commands
between Boxer processes. The membership updates contain
the expected external address of the Boxer network control
service. At this point, all nodes have enough information to
establish new control connections through the NAT. Boxer
nodes establish the control TCP connections between the new
node and the rest of the nodes in the network. This procedure
is repeated for every joining node resulting in NxN connec-
tivity through TCP connections, one for each pair of nodes in
the network.

Providing TCP connections: After the Boxer networking
service is initialized as described above, every node in the net-
work is ready to provide TCP connectivity to its local Boxer
process. The Boxer networking service provides NAT setup
service for its local Boxer process and to Boxer processes
running on remote nodes. In the current version, the Boxer
networking service does not open TCP connections on behalf
of processes; instead, it sets up the appropriate state in the
NAT so that when the process attempts to open a TCP con-
nection to another function, the network traffic will traverse
through the NAT and the connection can be established.

Figure 3 illustrates the TCP connection process. A Boxer
process wishing to establish a TCP connection to a remote
Boxer process cannot immediately open a connection to the re-
mote address because the NAT would block it. Instead, (1) the

process sends a request to the local Boxer networking service
to request that the NAT state be configured for the specified
connection. If the connection is to an address that is a part of
the Boxer network, then (2) the request is forwarded to the
appropriate remote Boxer network service using the control
connections configured during the initialization (described
above). The remote Boxer network service (3) performs the
NAT configuration and then (4) sends an acknowledgment
back to the requesting Boxer service that the NAT is ready. (5)
The confirmation is forwarded back to the process that made
the original request. At this point, the requesting process can
(6) attempt opening a TCP connection to the previously spec-
ified remote address. Because the remote Boxer configured
the NAT, opening the connection will traverse the NAT and
reach the remote process. Assuming the remote process is
listening for incoming connections at the specified address,
the TCP connection is established.

4.3 Coordination Service
Every Boxer node runs a simple coordination service. The
service exposes an interface for local processes to stream
membership updates as new nodes join the network. Every
membership service instance allows other nodes to become
children and propagate the updates. Currently, the seed node
is used as the root of the propagation tree. The coordination
service is used during the initialization process (described
above) by the networking service to establish the control
connections. The execution service (described below) uses
the coordination service to determine when to proceed with
the application execution and to provide the application with
the list of peer addresses.

4.4 Transparent Execution Service
The Boxer execution service provides functionality to sched-
ule the execution of applications in a transparent manner. To
use Boxer, the programmer specifies a command for Boxer
to run when the Boxer process starts executing. The com-
mand can either be run immediately or after a specified num-
ber of members have joined the Boxer network. For exam-
ple, perforator -s SEED_ADDR -n 5 zk-start.sh will
run the zk-start.sh command once the network has five
members. This mode of execution is particularly useful to start
datacenter applications that require a static network configu-
ration. If a barrier for a target number of workers is specified,
Boxer runs the specified command and sets its environment
variables to indicate the local node address, a unique node
ID assigned to the current node, and a file name of a file con-
taining the list of addresses for all other nodes. If no barrier
is specified and the command runs immediately, Boxer will
still learn of network membership changes during execution
via the coordination service. To run datacenter applications,
users may write small shell scripts that generate the necessary

5



P0

Perforator

F0

2

3

5

4

1

6 7

8

9

IL

Figure 4: Transparent application execution via the interposi-
tion library(IL). Application process P0 uses socket connect
function to open a TCP connection to a remote function.

configuration files based on the environment variables and
then start the application.

4.5 Interposition Library

To enable applications to establish connections using Boxer
without requiring changes to application code, when Boxer
runs commands, it instructs the dynamic linker to load the
Boxer interposition library before all other shared libraries
are loaded and the application execution begins. The Boxer
interposition library is designed selectively to intercept func-
tions provided by other shared libraries that are loaded by the
dynamic linker.

We design Boxer to provide transparent networking sup-
port for applications that use the socket interface, which is
generally provided by a version of the libc system library on
Linux systems. Applications use the connect function on
stream sockets to open TCP connections. When the interposi-
tion library is loaded, applications use the connect function
exported by the interposition library, instead of the default ver-
sion provided by libc. This provides the primary mechanism
for intercepting the necessary function calls to provide trans-
parent sockets semantics using Boxer networking to establish
TCP connections.

Figure 4 illustrates the process of transparently opening
remote TCP connections by an application running in a func-
tion with Boxer. Every time an application process calls the
connect function, it is intercepted by the interposition library
(1) If the call is not associated with a TCP socket, the inter-
position library immediately forwards the call to the default
implementation of connect. Otherwise, if the socket is not
already bound to a local address, it is bound to a local ad-
dress assigned by the kernel, and then the local and remote
addresses associated with the socket are used to construct
the appropriate connection request command. The command
is then sent to the local Boxer networking service. (2) The
networking service forwards the request to the appropriate
remote node (3) and, when the result is received, (4) it reports
it back to the library. (5) If a successful acknowledgment is re-
turned from Boxer networking, that indicates that the NAT is
configured, so the interposition library (6) establishes a TCP

connection using the default version of the connect function.
When the system connect function completes, (7) the result
of the final call is returned to the calling application. (8) The
application does not observe any functional difference from
the default connect call. If the connection was successful,
the application continues to use the TCP connection in the
same way as if Boxer was not involved in the process. No
function calls for sending and receiving data over the socket
are intercepted; instead, (9) default library functions are used
directly.

In addition to the connect function, to provide trans-
parency to the applications accepting TCP connections, the
bind socket function is also intercepted by the interposition
library. The NAT configuration process performed by the net-
working service requires binding a temporary socket to the
same local address as the socket that an application accepts
connections on. To make this possible, the application’s listen-
ing socket must have the SO_REUSEPORT socket option set. To
support unmodified applications, Boxer modifies this socket
option for the application by intercepting bind calls (the same
effect could be achieved by intercepting other functions as
well). It should be noted that this is an example where perfect
transparency is not preserved. The application can detect that
the option was changed on the socket, and if the application
relies on this option not being set, then it could have an im-
pact on the application. However, we do not aim to cover
unusual corner cases, and typical datacenter applications are
functionally not affected.

4.6 Packaging Applications with Boxer

In order to run existing applications in serverless functions,
they have to be packaged together with Boxer using the de-
ployment process of the cloud provider. A typical application
package consists of four components: (1) the event handler
the function service calls when the function is invoked, (2)
the Boxer executable and interception library, (3) the applica-
tion itself including templates of its configuration files, and
(4) a dynamic configuration script. In AWS, we have used
dependency layers for the Boxer and application code and
deployed the handler and configuration scripts as the function
code. Boxer introduces a small function deployment package
size overhead resulting from the Boxer executable and inter-
ception library. These components account for 3.9 MB and
2.8 MB before compression, and 873 KB and 545 KB after
compression (Boxer and interception library, respectively).
In total, the package size increases by 1.4 MB, a reasonable
overhead considering the current deployment package size
limit of 50 MB.

The event handler typically starts the networking service
such that the newly invoked function joins the network. The
address of the seed process, which is required for that pro-
cess, can be passed as a function parameter in the invocation
or read from some pre-defined place in the cloud. The exe-

6



TCP connection type
Mean Median Std. Min Max

Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse
Function-to-Function 622.57 622.63 626.88 628.59 24.32 25.81 564.25 561.16 680.63 678.36

VM-to-Function 428.28 426.03 429.03 428.09 1.69 4.01 420.31 415.62 429.16 429.18
Function-to-VM 410.31 427.05 422.64 428.74 26.58 3.61 335.70 414.39 429.06 430.33

Function-to-VM-native 427.77 426.67 429.04 428.62 3.16 4.93 412.74 399.35 429.07 429.07
VM-to-VM 428.89 428.96 428.96 428.95 0.55 0.29 424.78 427.50 429.01 430.39

VM-to-VM-native 429.02 429.06 429.03 429.07 0.15 0.02 428.43 429.02 429.65 429.09

Table 1: TCP throughput in Mbit/s for different connection types measured using iperf3[16] Forward and Reverse modes refer to
throughput achieved by the client side generating traffic or server side respectively.VMs are EC2 m4.large instances.

TCP connection type
Mean Median Std. Min Max

Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse
Function-to-Function 621.48 621.44 628.42 627.95 23.87 24.28 560.61 560.99 674.14 677.28

VM-to-Function 622.98 624.10 610.70 623.97 26.59 32.31 595.92 566.07 680.64 681.22
Function-to-VM 623.18 621.78 637.01 640.82 26.99 32.22 564.00 570.34 658.91 664.03

Function-to-VM-native 624.13 622.39 639.62 622.06 27.75 31.24 566.61 571.08 657.34 668.00
VM to VM 4684.53 4706.22 4744.35 4735.99 144.29 103.36 4034.14 4263.13 4789.13 4787.11

VM-to-VM-native 4770.42 4695.97 4786.23 4740.02 39.46 159.41 4571.73 3903.98 4787.20 4789.87

Table 2: TCP throughput in Mbit/s for different connection types measured using iperf3[16] between 32 pairs of hosts for each
type. Connection types are the same as in Table 1. The measurements were conducted in AWS eu-west-3 region, VMs are EC2
m5.large instances.

cution service then starts the dynamic configuration scripts;
depending on the selected start-up mode, this happens either
immediately or after enough nodes have reached the barrier.
The configuration script consults the coordination service for
the current list of nodes in the network and their addresses and
generates the runtime configuration of the application using
the configuration template based on that list. When everything
is set up, the script runs the application itself.

5 Benchmarking Boxer

To evaluate Boxer in practice, we start by characterizing its
throughput and latency.

5.1 Throughput analysis
We summarize the networking characteristics we observe in
AWS Lambda using Boxer. We show what a typical applica-
tion running in AWS Lambda with Boxer can achieve in terms
of TCP throughput and latency. Unless noted otherwise, all
measurements were performed in AWS us-west-2 region with
Lambda functions with 3008MB of memory and m4.large
EC2 VM instances.

Boxer enables TCP connectivity between AWS Lambda
serverless functions and allows outside hosts, running outside
of AWS Lambda to initiate TCP connections to serverless
functions. As described in Section 4.2 this is achieved by
traversing the NAT gateways between hosts. During devel-
opment we have seen unfavorable network conditions when
Boxer used different methods to establish connectivity. This

is because the cloud applications we want to enable usually
expect symmetric network properties between end-points.
However, given that Boxer traverses an unknown network
of middle-boxes that may impose arbitrary network filtering
or throttling rules, we must verify the properties of the var-
ious scenarios the middle-boxes could differentiate, based
on ordering of packets, timing or types of end-hosts. Thus,
in the evaluation we distinguish six connection types; (1)
Function-to-Function connections are established by Boxer
between a pair of AWS Lambdas, (2) VM-to-Function are
connections initiated by Boxer running in an EC2 VM to an
AWS Lambda also running Boxer, (3) Function-to-VM are
initiated by Boxer running in AWS Lambda to a EC2 VM also
running Boxer, (4) Function-to-VM-native are connections
initiated from AWS Lambda to EC2 VM without the use of
Boxer (this scenario is allowed by default on AWS Lambda)
as it is used a baseline, (5) VM-to-VM are connections es-
tablished using Boxer between a pair of EC2 VMs and (6.)
And as a baseline, VM-to-VM-native are vanilla connections
established between a pair of EC2 VMs without Boxer. The
evaluation also proves the versatility of Boxer and the many
configurations in which it can be deployed.

We benchmark TCP throughput of different connection
types between pairs of hosts (VMs or functions) by running
unmodified iperf3[16] tool as a Boxer application (or na-
tively for the native connection types). We instantiate 32
non-overlapping pairs of functions for a 60 seconds period
for each scenario. In each pair, one function runs iperf3 in
server mode, and one in client mode. The iperf3 client func-
tion connects to the listening server to begin the configured

7



TCP connection type
Round-trip latency of 1k byte message (µs) Connection establishment time for time-to-first byte (µs)

Mean Median Std. Min Max Mean Median Std. Min Max
Function-to-Function 694.23 758.00 289.52 202.00 2769.00 2735.21 2625.00 10001.00 890.00 1033112.00

VM-to-Function 547.84 457.00 194.29 244.00 2471.00 1981.38 2153.00 7909.74 821.00 1011171.00
Function-to-VM 520.10 436.00 189.53 244.00 2372.00 2086.03 2239.00 6124.57 882.00 1015205.00

Function-to-VM-native 622.53 686.00 175.57 241.00 2434.00 1378.56 1244.00 8027.04 382.00 1012935.00
VM-to-VM 193.69 188.00 43.34 150.00 2165.00 1067.24 1034.00 166.09 894.00 7402.00

VM-to-VM-native 197.62 194.00 28.18 153.00 1862.00 407.81 345.00 284.37 258.00 6416.00

Table 3: Round-trip latency and connection establishment times for different TCP connection types.

benchmark. When configured in the forward mode, the client
side generates TCP traffic, when configured in the reverse
mode, the server side generated the TCP traffic. We measure
both to verify that the underlying network does not apply dif-
ferent network policies in different directions (we have seen
this during development.) The achieved throughput reported
on the receiving side at 1 second interval.

Table 1 presents throughput statistics for different connec-
tion scenarios. The sustained average throughput is 622Mbit/s
in forward and reverse direction between a pair of AWS
Lambda functions running Boxer (Function-to-Function). The
variance level is low; the throughput is steady and sustained
throughout the connection. In an additional experiment, we
verified that the throughput can be sustained throughout the
maximum lifetime of an AWS Lambda function (currently
15 minutes). The observed throughput between a pair of
VMs is 429Mbit/s if Boxer is used or not, demonstrating
that Boxer adds no data-plane overhead (after a connection
is established). Throughput between functions and VMs is
similar (410-428Mbit/s) and symmetric in all connection sce-
narios. In this case it is limited by the throughput of the VMs
(m4.large) network. Table 2 shows the same benchmarks but
using a higher-bandwidth VM network (m5.large instances):
the upper-bound on the throughput between AWS Lambda
and VMs is the same as the throughput of the AWS Lambda in-
ternal network of 621Mbit/s (the experiment is performed in a
different AWS region, and AWS Lambda function-to-function
throughput is the same). The achieved TCP throughput be-
tween VMs and functions matches that observed by others
[24] between functions and AWS services such as S3.

To gain further insight about the bandwidth limits enforced,
we conduct a load testing experiment by concurrently sending
data from multiple functions to one. The server executing in
one function listens for connections from clients executing in
N other functions. Each client establishes one TCP connec-
tion to the server and attempts to saturate the connection by
sending data in a tight loop. At 1 second interval, the server
records aggregate bytes received from all of the clients. We
vary the number of clients from 1 to 256 functions and run
each configuration over a 5 minute interval. Figure 5 presents
the averages of the aggregated received throughput at the
server after removing the initial and final 30 seconds of the
experiment measurements. The maximum observed through-

put is 621.69Mbits/s with 1 sending function and minimum
of 607.04Mbit/s at 128 sending functions. We attribute the
degradation of less than 3% to the overhead associated with
handling multiple connections. This leads us to the conclu-
sion that the ingress TCP bandwidth limits imposed on AWS
Lambda functions do not depend on the number of sending
function and that the available bandwidth is comparable to
that of regular instances.

The only resource parameter that can be adjusted for AWS
Lambdas is the amount of memory, which then proportion-
ally determines the vcpu share allocated to the function. To
determine if the memory setting also influences network prop-
erties we varied memory allocated to functions and measured
the achievable throughput. The throughput did not vary with
memory settings of 512MB, 3008MB, and 10240MB.

5.2 Latency analysis

We measure TCP latency of the six connection types de-
scribed above. For each connection type, we instantiate 32
non-overlapping pairs of hosts (AWS Lambda functions or
VMs). Each host executes a benchmarking program, and every
pair opens a single TCP connection with Nagle’s algorithm
disabled by both hosts. The host assigned the client role im-
plements a TCP echo client that initiates a connection to the
assigned server host. After accepting the connection from the
client, the server function initiates 128 rounds of ping-pong
exchanges of a 1024-byte message and measures the total
time, this measurement is repeated 1024 times. Table 3 list
the summary statistics of observed round-trip latencies for
different connection types and Figure 7 shows the eCDF of
the latencies measured.

Boxer’s TCP connections between pairs of functions have
a mean round-trip latency of 694µs. These connections also
show significant variability in latencies, with a range between
202µs and 2769µs, as can be seen in the eCDF plot. The main
source of the observed variance is not due to the variance
within each TCP connection but due to the variance between
different TCP connections. This suggests that the network
between different Lambda functions, from the latency per-
spective, is not uniform, and different instantiation patterns
result in different latencies. This makes sense as the distance
between the machines where functions are deployed plays a

8



1 2 4 8 16 32 64 128
Number of sending functions

0

100

200

300

400

500

600

Av
er

ag
e 

th
ro

ug
hp

ut
 [M

bi
t/s

]

Figure 5: Comparison of aggregate re-
ceive throughput as number of send-
ing functions varies. Maximum is
621.69Mbits/s at 1 sending function
and minimum at 607.04Mbit/s at 128
sending functions, black lines repre-
sent standard deviation.

103 104 105 106

TCP connection establishment [micros]
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Function to Function
VM to Function
Function to VM
Function to VM (native)
VM to VM
VM to VM (native)

Figure 6: Empirical CDF of TCP con-
nection establishment times. Time-to-
first-byte (TTFB) for different connec-
tion types measured in microseconds
between 32 distinct pairs of hosts es-
tablishing 1024 TCP connections each.

103

TCP round-trip latency of 1024 byte message [micros]
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Function to Function
VM to Function
Function to VM
Function to VM (native)
VM to VM
VM to VM (native)

Figure 7: Empirical CDF of TCP
round-trip latencies between 32 dis-
tinct nodes pairs (of VMs and AWS
Lambda functions) echoing 1024 byte
message, repeated for 6 connection sce-
narios.

role in determining the latency.
The latency measurements of the VM-to-VM-native con-

nections, without the use of Boxer, and VM-to-VM connec-
tions that are established by Boxer show very close round-trip
latencies of 198µss and 194µs, and follow a very similar dis-
tribution which can be seen in the eCDF plots of the two
connection types. This further shows that there is no data
plane overhead of Boxer provided connections once they are
established. The observed latency of connections between
Lambda functions and VMs have similar mean round-trip la-
tencies ranging from 520µs to 622µs, and all follow a similar
distribution as can be seen in the eCDF plot. Perhaps surpris-
ing, the connections provided by Boxer have a slightly lower
round-trip latency, which could be attributed to a different
processing of the traffic by the network due to its different
initial packet signature (we may investigate this further in the
future.)

We observe that the mean round-trip latency of Boxer’s
TCP connections between pairs of functions is 3.51× greater
than latencies observed on AWS (m4.large) VM-to-VM native
TCP connections. We consider this acceptable given the added
functionality of Boxer.

5.3 Connection establishment

We measured the time required for application to have an
established TCP connection for the six connection types de-
scribed above. For each connection type we instantiate 32
host pairs (AWS VMs or Lambda functions depending on the
scenario) and assign one host in each pair to be the client and
the other to be the server. The time-to-first-byte(TTFB) mea-
surement is recorded by the client. The client starts a timer,
attempts to connect to its server and waits to read 1 byte of
data from the server. Once it receives the 1 byte it stops the
timer, records the duration and closes the connection. The

server accepts connections and replies with 1 byte right after
it accepts a new connection. This is repeated 1024 times by
each pair, the measurements are in Table 3.

Unlike TCP throughput and latency, Boxer does have over-
head compared to native TCP connection times. Mean time
to establish a function to function connection is 2735µs. The
overhead can be seen in comparison of establishment time
for VM-to-VM-native connections of 408µs vs VM-to-VM
connections that are established by Boxer of 1067µs. This is
due to additional round trip necessary to contact the destina-
tion Boxer to request that the connection setup and wait for
acknowledgement before proceeding locally, or in case of an
error response to forward to the error to the application (for
example in case when there is nothing listening at the destina-
tion address.) This additional signaling adds to the connection
setup times, and can also be observed in the connection times
between functions and VMs. However, given that there are
no alternative native connections for function-to-function and
VM-to-function connection types, we consider the latency
acceptable.

The eCDF of the TTFB times for the different scenarios in
Figure 6 shows that the comparable scenarios with and with-
out Boxer connection setup follow similar distribution, but are
shifted by additional delay of the round trip times. Function-
to-function connections, and connection types that cross the
AWS Lambda and EC2 networks have maximum TTFB times
observed to be over 1 second, including a connection scenario
that does not involve Boxer to establish TCP connections
(Function-to-VM-native.) This suggests that there may be
packet loss or network congestion in the network and it is not
a direct consequence of the procedure Boxer uses to estab-
lish the connections. As it can be seed from the eCDF such
extreme connection times are rare, in the case of Function-to-
Function connection type, 99.9 quantile for TTFB is 20654µs.
Compared to communicating through storage, such latencies

9



are acceptable, especially considering that in all of the above
experiments performed, all connections were successfully
established.

6 Short-lived data center

To demonstrate the ability of Boxer to provide a short-lived
datacenter, we run an unmodified, complex distributed appli-
cation: the DeathStarBench benchmark [12]. DeathStarBench
is a suite of cloud microservice benchmarks deployed us-
ing container networks which mimic how real applications
are deployed in production. We show that Boxer allows us
to transparently deploy stateless microservices using AWS
Lambda instead of AWS EC2 (VMs) or Fargarte (Containers).

6.1 Using Boxer with the DeathStarBench
We focus on DeathStarBench’s socialNetwork application,
which offers a social network service to users and is orga-
nized using three microservice layers: i) front-end layer (im-
plemented using an NGINX webserver); ii) logic layer (im-
plemented using stateless Thrift services that communicate
through RPCs); iii) caching and storage layer (implemented
with MongoDB and Memcached instances). In socialNetwork,
user requests are received by the front-end layer (NGINX web
server) and then routed to one of the services in the logic layer.
Depending on the user request, the logic layer may perform
one or multiple requests to the caching and storage layers.
Since the logic layer is stateless (i.e., it contains no internal
persistent state), it can be deployed on AWS Lambda. How-
ever, since functions cannot receive connections from external
components, (e.g., the front-end NGINX laye in this case),
Boxer is required to establish such connections.

We did not have to make any modifications to the
application code to deploy DeathStarBench on AWS
Lambda with Boxer. The benchmark was only modi-
fied to i) use names instead of fixed local IPs (for
example, replace 127.0.0.1 by nginx-thrift), and ii)
wrap the invocation of all components of the front-end
and logic layers with the Boxer binary (for example, re-
place SocialGraphService with Boxer -s <seed> -n
<number of components> SocialGraphService). Wrap-
ping the invocation of the front-end and logic layer compo-
nents with Boxer ensures that the creation of new connections
goes through the Boxer network, allowing not only the front-
end layer to establish connections to services running in the
logic layer (VM to Lambda), but also components in the
logic layer to establish connections between them (Lambda
to Lambda).

6.2 Methodology
To evaluate the performance impact of moving the logic layer
to Lambda using Boxer, we use three types of deployments.

First, an EC2-only deployment in which all components are
deployed as VMs in EC2 is used as our baseline. Second,
an EC2 VM-only deployment in which all components are
still deployed as VMs in EC2 but the components of both
the front-end and logic layers use Boxer. This deployment,
EC2-only (w/ Boxer), is used to measure the performance
overhead of using Boxer. Third, a mixed deployment where
the front-end, and caching and storage layers are deployed as
VMs, and the logic layer is deployed using Lambdas, EC2 +
Lambda (w/ Boxer).

To measure the throughput and latency of the end-to-end
system we use two workloads included in the DeathStar-
Bench suite. A read workload that issues requests to read a
user timeline in the social network, and a write workload that
creates follow relationships between users. Both workloads
are generated using the wrk [33] tool which builds and issues
requests to the front-end layer. The performance of both work-
loads (read and write) is reported separately as each workload
stresses the network and Boxer in a different way. The read
workload mostly transfers data from the caching and storage
layer (VMs), to the logic layer (VMs or Lambdas), and then
to the front-end layer (VMs). The write workload operates in
the opposite direction.

All experiments in this section were conducted in AWS
Ohio (us-east-2) region. All VMs use a base Amazon Linux
2 [2]. For front-end, and caching and storage layers, we use
t3a.micro instances due to the memory requirements of the ser-
vices included in these layers. For logic layer, when deployed
in VMs, we use t3a.nano instances. Lambdas are deployed
using the Python3.7 runtime (which is used to launch Boxer
and the service binaries). Each Lambda is given 2048 MB
of memory size (we experimentally determined that in us-
east-2, the performance of a 2048 MB Lambda is similar to a
t3a.nano VM instance).

6.3 Stateless Services in Lambdas

We analyze the throughput and latency impact of using Boxer
to deploy the DeathStarBench social Network application and
move the application logic layer to AWS Lambda. Figure 8
shows the results for both read and write workloads across
the three different types of deployments. For each workload,
we collect the average throughput and 90th percentile latency
with an increasing load in the system.

Results show that Boxer introduces only a low overhead.
For the read workload, the EC2-only deployment becomes sat-
urated at 3270 ops/s while the EC2-only (w/ Boxer) becomes
saturated at 3070 ops/s. For the same data points, the 90p
latency of a single request for the EC2-only and EC2-only (w/
Boxer) deployments are 3.18 ms and 5.07 ms, respectively.
Note that these latencies are measured end-to-end and there-
fore include multiple internal microservice to microservice
requests. The write workload demonstrates similar results.
The EC2-only and EC2-only (w/ Boxer) deployments be-

10



0 1000 2000 3000 4000
Throughput (ops/s)

0

2

4

6

8

10

12

14

16

90
p 

La
te

nc
y 

(m
s)

EC2-only
EC2-only (w/ Perforator)
EC2 + Lambda (w/ Perforator)

a) Read Workload

0 200 400 600 800 1000 1200 1400
Throughput (ops/s)

0

5

10

15

20

25

30

35

40

90
p 

La
te

nc
y 

(m
s)

EC2-only
EC2-only (w/ Perforator)
EC2 + Lambda (w/ Perforator)

b) Write Workload

0 20 40 60 80 100
Time (seconds)

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (o

ps
/s

)

Absorb Bust w/ EC2
Absorb Burt w/ Lambdas
Scaling action

c) Burstable Write Workload

Figure 8: DeathStarBench experimental results for read and write workloads in a static deployment (left and center); burstable
write workload in dynamic deployment (right).

come saturated at 1411 ops/s and 1294 ops/s, with latencies
of 7.07 ms and 7.56 ms, respectively.

We use a similar analysis to measure the overhead of
launching the logic layer services in AWS Lambda by compar-
ing the EC2-only (w/ Boxer) and EC2 + Lambda (w/ Boxer)
deployments. Figure 8 shows that for the read workload, the
EC2 + Lambda (w/ Boxer) deployment saturates at a 3556
ops/s with a 90p latency of 7 ms. For the write workload,
the same deployment saturates at 1189 ops/s and with a 90p
latency of 4.55 ms.

We conclude that using Boxer incurs a small performance
overhead arising from the interception and management of
connections between the multiple services. Moving services
to Lambda also incurs a small overhead due to the different
way CPU and Network are allocated to VMs and lambdas.
One could further increase the memory budget given to lamb-
das to also increase their computational power and thus close
the performance gap between EC2-only (w/ Boxer) and EC2
+ Lambda (w/ Boxer).

7 Dynamic Load Adaptation

We now show that Boxer enables us to increase the scaling
factor of stateless microservices running on VMs by lever-
aging the elasticity of serverless platforms to adapt to bursty
loads. While in the previous experiments we deployed the
logic layer of the DeathStarBench socialNetwork application
entirely on Lambda or EC2, in this section we start by deploy-
ing all logic layer services on VMs. When the load increases,
additional logic layer services are allocated to handle the in-
creased load either on VMs or Lambdas. We compare two
deployments: i) VM-based deployment that allocates extra
VMs to handle increased load; ii) VM-based deployment that
allocates lambdas to accommodate increased load. Our goal
is to study the ability to adapt to a load burst.

Figure 8 (right-hand side) presents a throughput trace of
both deployments. Throughput is measured using wrk [33] by
looking at how many requests the front-end layer can handle

per second. After 30 seconds (dashed vertical line), a new
set of VMs or lambdas are deployed to handle the increased
load. After requesting a new set of VMs to join the logic
layer (t=30s), the system throughput starts increasing after 40
seconds (t=70s) and only stabilizes (completely absorbs the
burst) after 75 seconds (t=105s). There are several reasons
to this. First, VM launch time is approximately 30 seconds
(i.e., until the VM is connected to the network). After the VM
launches, we also register its IP in our nameserver (we use
DNS round-robin to distribute the load). At this point, when
NGINX (front-end layer) needs to open a new connection
to serve a new client, it will try to resolve the logic layer
component name through the nameserver. Because load distri-
bution is performed per-connection and connections are kept
open to serve multiple requests, adapting to a burst request
takes dozens of seconds. The time interval between nodes
becoming available and being fully utilized by NGINX could
be reduced by forcing NGINX to recycle connections more
frequently. This would, however, add overhead for creating
more connections.

Using Lambdas to absorb load bursts can significantly re-
duce the time to add new logic layer services, and therefore,
reduce the time to reach a steady throughput using all new
nodes. Note that, although lambdas take less than one second
to launch (compared to approximately 30 seconds for VMs),
throughput starts increasing 8 seconds after the new lambdas
are launched (t=38s), and only stabilizes after 39 seconds
(t=69s). In summary, using Lambda to accommodate bursts
reduces the time for new components start receiving requests
by 5×, and reduces the time to fully accommodate a burst by
1.9×.

8 Discussion

We have shown that supporting direct networking among func-
tions enables running off-the-shelf distributed applications,
which were designed for traditional Linux execution environ-
ments, on serverless platforms. By decoupling the serverless

11



resource management model from its event-driven program-
ming model, Boxer enables cloud users to benefit from the
resource elasticity of serverless platforms without having to
change the programming model of their applications. The
ability to run applications seamlessly between VM and server-
less platforms allows users to leverage serverless platforms
during bursty load periods and benefit from the lower cost per
unit time of VM resources during steady load periods.

8.1 Opportunities

Enabling direct networking among functions opens up many
opportunities to address other key limitations of serverless
platforms. For example, to overcome limitations on func-
tion execution time, a function that is about to reach the
maximum supported execution time on the platform could
spawn a follower function and send its state to the follower
directly to transparently continue execution. For instance, In-
finicache [31] refreshes functions that cache data by having
a function call itself and send the cached data to its newly
spawned clone. With Boxer, state can be sent through a direct
communication channel, without relying on a proxy. Work-
flows can be programmed into functions so that a sequence of
steps can execute automatically with functions spawning the
next step and passing the necessary data without having to
rely on an external orchestrator [15, 37]. In addition, scatter-
gather interactions become possible and more efficient. This
would considerably simplify running applications such as
those considered in ExCamera [11] and gg [10], or removing
a variety of work-arounds built to bypass the lack of function-
to-function communication to implement stateful functions
[1, 29]. It also enables implementing truly distributed data
processing operators such as joins instead of using today’s
contrived solutions which need to communicate through stor-
age [24, 25]. Similar ideas apply to ML over serverless, which
today is expensive due to the lack of communication [19].
Boxer can also be used to implement a form of work stealing
among functions of a serverless applications, since functions
could communicate directly with one another to request ad-
ditional work if they are idle. This mechanism adds another
dimension of elasticity to serverless computing, which is par-
ticular useful when the amount of work to be done is not
easily determined upfront or may exhibit skew.

Another key limitation of serverless platforms is that they
do not allow users to optimize the placement of functions to
improve performance [27]. By supporting direct networking
between functions, cloud providers can get a complete picture
of the communication patterns of an application and use this
information to optimize function placement [21]. Understand-
ing the communication patterns of serverless applications
is difficult for providers to do today as functions are forced
to communicate through remote storage systems or proxies.
While we have shown how users can circumvent the network-
ing limitations in today’s serverless platforms with Boxer, we

hope that cloud providers will natively provide networking
abstractions on serverless platforms. For example, providers
could extend the serverless programming model to include
communication collectives, which would allow them to opti-
mize function placement policies for different communication
patterns.

8.2 Current limitations

Boxer raises a number of issues that we intend to address in
the future:

Boxer control network topology: Currently Boxer estab-
lishes a fully connected TCP control topology between all par-
ticipating Boxer nodes. As the scale of deployment increase,
this will likely be one of the bottlenecks. We are investigat-
ing solutions such as indirection through other Boxer nodes
to route control messages, or using a datagram protocol to
conserve the file descriptors.

Non-blocking I/O: Boxer’s transparent interposition layer
does not support all non-blocking socket operations. Currently
Boxer will block a calling thread for the duration of connect
call, which can degrade performance of applications and can
break the semantics of some.

Lambda execution environment: Applications running
in Lambda do not have access to the same exact environment
that would be available in an EC2 VM. For example, the
local file system might be read-only, there might be only
one network device with a local IP, etc. Boxer can circumvent
these limitation and emulate an environment similar to the one
available in VMs by further interception of the libc functions
used to query local interfaces, local files, etc.

Multiple lambdas behind a single NAT address:
Boxer currently does not support multiple lambdas deployed
behind the same NAT address. When this happens, a single
external IP address is visible and Boxer cannot distinguish
between the two nodes. To support this scenario transparently
to the user application, Boxer needs to virtualize the network
address space.

8.3 Truly general purpose short-lived datacen-
ters

Besides networking, other limitations that serverless plat-
forms impose today include limited resources per function
invocation (e.g., up to 10 GB of memory and 6 vCPUs in
AWS Lambda), limited execution time for each function (e.g.,
15 minutes in AWS Lambda), and the lack of support for het-
erogeneous hardware such as GPUs. Cloud providers have
been steadily increasing resource limits and function execu-
tion time limits. We expect this trend to continue as serverless
computing becomes increasingly popular for a broad range
of applications. In particular, supporting higher resource lim-
its per function gives developers the option to scale up in

12



addition to scale out their application to achieve higher per-
formance. Both of these scaling dimensions are important for
general datacenter computing. Adding support for running
serverless functions on heterogeneous hardware resources,
such as accelerators, will also become increasingly important
as applications such as machine learning jobs, which rely on
GPUs and ASICs, can also benefit from the elasticity, fine-
grain billing, and higher level of abstraction to the cloud that
serverless computing offers.

9 Conclusion

We presented Boxer, a system that transparently provides
direct communication between serverless functions. Boxer
uses a NAT traversal mechanism to enable serverless func-
tions to accept incoming traffic from external sources. By
leveraging dynamic linking to intercept function calls, Boxer
provides direct networking functionality for serverless func-
tions through the standard socket networking API and requires
no modifications to Linux TCP-based datacenter applications.
With Boxer, latency sensitive applications such as microser-
vices can be run unmodified on AWS Lambda. Our system
presents a major step towards treating serverless platforms as
short-lived, instant, general purpose datacenters and allows
a broader range of applications to benefit from the elasticity,
fine-grain billing, and high level of abstraction to the cloud
that serverless platforms offer.

References

[1] Adil Akhter, Marios Fragkoulis, and Asterios Katsi-
fodimos. “Stateful Functions as a Service in Action”.
In: Proc. VLDB Endow. 12.12 (2019), pp. 1890–1893.

[2] Amazon Linux 2. URL: https://aws.amazon.com/
amazon-linux-2/ (visited on 12/10/2020).

[3] Amazon S3. URL: https://aws.amazon.com/s3
(visited on 08/17/2020).

[4] AWS Lambda. URL: https://aws.amazon.com/
lambda (visited on 08/17/2020).

[5] AWS Lambda changes duration billing granularity
from 100ms down to 1ms. URL: https : / / aws .
amazon . com / about - aws / whats - new / 2020 /
12/aws- lambda- changes- duration- billing-
granularity-from-100ms-to-1ms/.

[6] AWS Lambda FAQs. URL: https://aws.amazon.
com/lambda/faqs/.

[7] AWS Lambda now supports container images as a
packaging format. URL: https : / / aws . amazon .
com / about - aws / whats - new / 2020 / 12 / aws -
lambda-now-supports-container-images-as-
a-packaging-format/.

[8] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and
Aleksander Slominski. “The Rise of Serverless Com-
puting”. In: Commun. ACM 62.12 (2019), pp. 44–54.

[9] Bryan Ford, Pyda Srisuresh, and Dan Kegel. “Peer-to-
Peer Communication Across Network Address Trans-
lators”. In: USENIX ATC. 2005.

[10] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. “From Laptop to Lambda: Out-
sourcing Everyday Jobs to Thousands of Transient
Functional Containers”. In: USENIX ATC. 2019.

[11] Sadjad Fouladi et al. “Encoding, Fast and Slow: Low-
Latency Video Processing Using Thousands of Tiny
Threads”. In: NSDI. 2017.

[12] Yu Gan et al. “An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implica-
tions for Cloud & Edge Systems”. In: ASPLOS. 2019.

[13] Google Cloud Functions. URL: https : / / cloud .
google.com/functions.

[14] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonza-
lez, Johann Schleier-Smith, Vikram Sreekanti, Alexey
Tumanov, and Chenggang Wu. “Serverless Computing:
One Step Forward, Two Steps Back”. In: CIDR. 2019.

[15] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis,
and Asterios Katsifodimos. “Distributed Transactions
on Serverless Stateful Functions”. In: Proceedings of
the 15th ACM International Conference on Distributed
and Event-Based Systems. 2021, pp. 31–42.

[16] iperf3. URL: https://software.es.net/iperf/
(visited on 12/10/2020).

[17] Eppinger J.L. “TCP Connections for P2P Apps: A
Software Approach to Solving the NAT Problem”. In:
Carnegie Mellon University, Tech. Rep, ISRI-05-104.
2005.

[18] Zhipeng Jia and Emmett Witchel. “Nightcore: Effi-
cient and Scalable Serverless Computing for Latency-
Sensitive, Interactive Microservices”. In: Proceedings
of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems. 2021, pp. 152–166.

[19] Jiawei Jiang et al. “Towards Demystifying Server-
less Machine Learning Training”. In: Proceedings of
the 2021 International Conference on Management of
Data. 2021, pp. 857–871.

[20] Ana Klimovic, Yawen Wang, Patrick Stuedi, Ani-
mesh Trivedi, Jonas Pfefferle, and Christos Kozyrakis.
“Pocket: Elastic Ephemeral Storage for Serverless Ana-
lytics”. In: OSDI. 2018, pp. 427–444.

13

https://aws.amazon.com/amazon-linux-2/
https://aws.amazon.com/amazon-linux-2/
https://aws.amazon.com/s3
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-changes-duration-billing-granularity-from-100ms-to-1ms/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-changes-duration-billing-granularity-from-100ms-to-1ms/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-changes-duration-billing-granularity-from-100ms-to-1ms/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-changes-duration-billing-granularity-from-100ms-to-1ms/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-now-supports-container-images-as-a-packaging-format/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-now-supports-container-images-as-a-packaging-format/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-now-supports-container-images-as-a-packaging-format/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-now-supports-container-images-as-a-packaging-format/
https://cloud.google.com/functions
https://cloud.google.com/functions
https://software.es.net/iperf/


[21] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra,
Ana Klimovic, Somali Chaterji, and Saurabh Bagchi.
“SONIC: Application-aware Data Passing for Chained
Serverless Applications”. In: USENIX Annual Techni-
cal Conference (USENIX ATC 21). 2021.

[22] Managing AWS Lambda Function Concurrency. URL:
https : / / aws . amazon . com / blogs / compute /
managing-aws-lambda-function-concurrency/
(visited on 08/28/2020).

[23] Microsoft Azure Functions. URL: https://azure.
microsoft.com/en-us/services/functions (vis-
ited on 08/17/2020).

[24] Ingo Müller, Renato Marroquín, and Gustavo Alonso.
“Lambada: Interactive Data Analytics on Cold Data
Using Serverless Cloud Infrastructure”. In: SIGMOD.
2020.

[25] Matthew Perron, Raul Castro Fernandez, David De-
Witt, and Samuel Madden. “Starling: A Scalable Query
Engine on Cloud Functions”. In: SIGMOD. 2020.

[26] Qifan Pu, Shivaram Venkataraman, and Ion Stoica.
“Shuffling, Fast and Slow: Scalable Analytics on Server-
less Infrastructure”. In: NSDI 19. 2019.

[27] Johann Schleier-Smith et al. “What Serverless Comput-
ing is and Should Become: The next Phase of Cloud
Computing”. In: Commun. ACM 64.5 (Apr. 2021),
pp. 76–84.

[28] Serverless Networking SDK. URL: http : / /
networkingclients.serverlesstech.net/ (vis-
ited on 08/17/2020).

[29] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin,
Johann Schleier-Smith, Joseph E. Gonzalez, Joseph M.
Hellerstein, and Alexey Tumanov. “Cloudburst: State-
ful Functions-as-a-Service”. In: Proc. VLDB Endow.
13.12 (2020), pp. 2438–2452.

[30] Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker,
and George Porter. “Particle: Ephemeral Endpoints for
Serverless Networking”. In: Proceedings of the 11th
ACM Symposium on Cloud Computing. 2020, pp. 16–
29.

[31] Ao Wang et al. “InfiniCache: Exploiting Ephemeral
Serverless Functions to Build a Cost-Effective Memory
Cache”. In: USENIX FAST. 2020.

[32] Michal Wawrzoniak, Ingo Müller, Rodrigo Bruno, and
Gustavo Alonso. “Boxer: Data Analytics on Network-
enabled Serverless Platforms”. In: CIDR. 2021.

[33] wrk - a HTTP benchmarking tool. URL: https://
github.com/wg/wrk (visited on 10/09/2021).

[34] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph
M. Hellerstein. “Anna: A KVS for Any Scale”. In:
ICDE. 2018.

[35] Chenggang Wu, Vikram Sreekanti, and Joseph M.
Hellerstein. “Autoscaling Tiered Cloud Storage in
Anna”. In: PVLDB (2019).

[36] Yunhong Gu, Xinwei Hong, and R. L. Grossman. “Ex-
periences in Design and Implementation of a High
Performance Transport Protocol”. In: SC ’04. 2004.

[37] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Se-
bastian Angel, and Vincent Liu. “Fault-tolerant and
transactional stateful serverless workflows”. In: 14th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November
4-6, 2020. 2020, pp. 1187–1204.

14

https://aws.amazon.com/blogs/compute/managing-aws-lambda-function-concurrency/
https://aws.amazon.com/blogs/compute/managing-aws-lambda-function-concurrency/
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
http://networkingclients.serverlesstech.net/
http://networkingclients.serverlesstech.net/
https://github.com/wg/wrk
https://github.com/wg/wrk

	Introduction
	Background
	Serverless Execution Environments
	Serverless Networking

	Related Work
	Communication Through Proxies
	Communication Through Storage
	General Purpose Serverless

	Boxer
	System Overview
	Networking Service
	Coordination Service
	Transparent Execution Service
	Interposition Library
	Packaging Applications with Boxer

	Benchmarking Boxer
	Throughput analysis
	Latency analysis
	Connection establishment

	Short-lived data center
	Using Boxer with the DeathStarBench
	Methodology
	Stateless Services in Lambdas

	Dynamic Load Adaptation
	Discussion
	Opportunities
	Current limitations
	Truly general purpose short-lived datacenters

	Conclusion

