
Off-the-shelf Data Analytics on Serverless
Michael Wawrzoniak1, Gianluca Moro1, Rodrigo Bruno2, Ana Klimovic1, Gustavo Alonso1

1Systems Group, Dept. of Computer Science, ETH Zurich
2INESC-ID/Técnico, U. Lisboa

ABSTRACT
Serverless has captured the interest of researchers and practitioners
alike, being often considered the next step in the evolution of the
cloud. Existing research, however, indicates it is ill-suited to data
analytics due to the limitations of commercial platforms. This has
led researchers to either design data analytics systems that work
around the limitations of serverless platforms, suggest alternative
serverless platforms, or both. In this paper we demonstrate that
there is a third option: to provide the functionality needed to run
off-the-shelf distributed data processing systems on top of existing
serverless platforms (e.g., AWS Lambda) in a transparent manner.
In the paper we discuss how this can be done and present initial ex-
perimental results of the TPC-H benchmark of unmodified Apache
Spark andApache Drill running onAWS Lambda. The results enable
research in serverless data analytics that go beyond patching the
shortcomings of existing commercial solutions and can be the basis
for turning serverless into a general purpose computing platform.

1 INTRODUCTION
Serverless (most commonly offered in the form of Function as a Ser-
vice, FaaS) has attracted significant attention due to its advantages
[36]: fast start times, dynamic and automatic elasticity, fine-grained
billing, and hands-off infrastructure management. The interest is
such, that it has been claimed it could be the next step in the evolu-
tion of cloud computing [37].

However, there is a growing amount of work indicating server-
less is ill-suited for data analytics due to limitations of the current
platforms [23, 42]. Limitations often discussed in the literature in-
clude short function lifetime, lack of persistent state [19, 22, 39]
and direct communication, as well as higher cost per second when
compared to running on VMs [30, 31].

Motivated by these limitations, there is a growing amount of
research on serverless data analytics along two main lines. One
approach involves extending existing serverless platforms, often
with VM-based services, to better support data analytics workloads
on serverless infrastructure [27, 34, 39, 45]. Another approach is
to build new engines specifically designed to work around the
limitations of existing serverless platforms[26, 30, 31, 47]. All these
efforts provide valuable insights on serverless data analytics but also
implicitly give up on the many existing distributed data processing
platforms (e.g., Spark, Flink, Drill, etc.) and depart from actual
commercial offerings for serverless. In practice, this amounts to
having to completely redesign data processing engines from scratch
and/or building on the assumption that open source serverless

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2024. 14th Annual Conference on
Innovative Data Systems Research (CIDR ’24). January 14-17, 2024, Chaminade, USA

platforms will be more efficient and feature-complete compared to
the native serverless offerings from cloud providers.

In this paper we explore and propose an alternative solution for
data analytics on serverless: to provide the functionality required to
run off-the-shelf distributed data processing platforms (e.g., Spark
or Drill) on top of existing commercial serverless platforms (AWS
Lambda [1]). Although practically challenging, doing so is based
on two insights: that serverless function platforms can be extended
without modifying the underlying infrastructure, and that contem-
porary publicly available serverless functions are actually similar
in memory size and computational power to what VMs were at
the time when most popular data analytic platforms were initially
developed (see Section 5). To test the feasibility of the idea, we intro-
duce a minimal interposition layer between engine processes and
the function platform to transparently provide the environment re-
quired by the engines. We use a further development of Boxer [44],
able to handle unmodified data processing engine processes, to
make the function environment appear like standard networked
containers or VMs to the engine processes. The mechanism does
not involve any changes to the serverless platform and provides
a complete interface that enables running unmodified distributed
data engines.

With our prototype, we are able to execute the TPC-H benchmark
on unmodified Apache Spark [48] and Apache Drill [5] running
on AWS Lambda. We demonstrate that the performance obtained
is comparable to that observed when running the base systems
on a comparable class of conventional EC2 VMs, thereby proving
that our approach is a viable alternative to having to completely
redesign either the engines or the serverless platforms.

2 MOTIVATION AND RELATEDWORK
There is a growing amount of research on serverless computing
[38]. Here we briefly focus on the work relevant to the point we are
making in the paper: how to enable data analytics on serverless.

As pointed out, there are two approaches. One is to design new
engines specific to serverless; the other is to develop more amenable
serverless platforms. Of course, a combination of both approaches
is also possible. Examples of the former approach are Lambada [30]
and Starling [31]. Both propose query engines atop unmodified
serverless platforms that use a varied number of techniques to work
around the limitations of serverless platforms (mainly optimizing
communication through storage and speeding up start-up times for
many functions). These systems have inspired other work extend-
ing the ideas to, e.g., machine learning [26, 47]. Pixels-Turbo [21]
augments a long-running VM-based data analytics system with
specialized serverless workers to accelerate processing in response
to sudden load spikes. Crackle [32] models a unified query engine
that can execute both on top of VMs and unmodified serverless
platforms to reduce overall cost.

CIDR’24, January 14-17, 2024, Chaminade, USA

Michael Wawrzoniak1 , Gianluca Moro1 , Rodrigo Bruno2 , Ana Klimovic1 , Gustavo Alonso1
1Systems Group, Dept. of Computer Science, ETH Zurich

2INESC-ID/Técnico, U. Lisboa

Function(microVM)
Linux Kernel

Li
nu

x
Pr

oc
es

s

Query Engine Process
(Spark, Drill)

 System C Library

Boxer Interposition

...

Function(microVM)
Linux Kernel

Li
nu

x
Pr

oc
es

s

Query Engine Process
(Spark, Drill)

 System C Library

Boxer Interposition

 ...
...

FaaS Platform (AWS Lambda)
Network Transport (TCP)

Figure 1: Unmodified distributed query engines running in parallel executing networked AWS Lambda functions.

Regarding alternative serverless platforms, the focus has been on
providing, e.g., stateful function services [19, 40, 46] or extending
serverless with, e.g., ephemeral storage solutions [27, 33] that offer
a fast data plane option for serverless functions.

Neither of these approaches take advantage of existing data ana-
lytics systems (e.g., Apache Spark, Drill) and existing commercial
serverless platforms (e.g., AWS Lambda). As a result, existing ap-
plications need to be rewritten to use the new platforms. It is also
questionable whether the new serverless platforms will ever be as
competitive and efficient as the native solutions of cloud providers.

The approach we put forward in this paper is based on a sim-
ple observation: serverless worker instances are already similar to
small VMs (some are based on microVMs [18]). Supporting existing
data analytics engines in serverless is, thus, a problem of ensuring
that the environment available in serverless workers is sufficiently
similar to the one available in serverful VM/container instances.
With that, one should be able to use existing distributed data pro-
cessing engines without changing either the underlying serverless
platform nor the engines themselves.

3 DISTRIBUTED QUERY ENGINES IN
SERVERLESS ENVIRONMENTS

The serverless FaaS paradigm is based on fine-grained, event trig-
gered computations that are composed into dataflow graphs. Com-
putations are based on Linux processes in both serverful VMs and
serverless functions. From that perspective, applications such as
distributed query engines running on VMs should, in principle,
be able to run in serverless functions. Unfortunately, the environ-
ment and computation composition model of serverless platforms
is significantly different from that of conventional VMs. Mainly,
distribution in serverless platforms is based on an event-based
dataflow composition model, while in conventional VM applica-
tions, it is based on parallel networked processes. Because of this,
conventional distributed engines do not work on serverless plat-
forms as they assume access to direct communication with other
concurrently executing remote processes.

To bridge this gap, we leverage an evolution of Boxer [44] to
transparently provide existing data engines with the required model

of network of parallel executing processes on top of existing FaaS
platforms. Doing this goes beyond just enabling networking as it
has a number of consequences on the execution environment. Here
we outline the most relevant aspects that need to be addressed.

3.1 Parallel function execution
Unmodified distributed query engines typically assume a static con-
figuration of distributed processes continuously exchanging data.
However, in serverless, function scheduling is based on events trig-
gering function executions (control of available concurrency of the
underlying resources is exposed in some commercial offerings [8]).
This gives the FaaS platforms more freedom for scheduling while
preserving the semantics of the dataflow computation, however,
it does not match the environment that distributed query engines
assume of a collection of active processes running in parallel.

To address this mismatch, we use an initialization mechanism
that creates an engine-specific pool of function instances running
in parallel. The pool of functions combines function types as needed
(e.g., worker nodes, head nodes, auxiliary systems, etc.). Once the
required combination of parallel functions is instantiated, the query
engine processes are started in the function pool, matching the
model that query engines expect.

3.2 Application transparency
To transparently expose the altered function environment to un-
modified engines, a thin interposition layer between the query
engine processes and the hosting functions (Figure 1) is introduced.
As the query engine processes are started, the system dynamic
linker is instructed to link a subset of system C Library function
references to the interposition library (Figure 1). When the query
engine processes issue these C Library function calls, they are first
intercepted by the library and handled in a way that emulates the
desired environment. For example, when a query engine process
attempts to connect to a named process running in a remote func-
tion, instead of returning an error as it would happen within a
serverless function, the name resolution and connect calls are inter-
cepted, network addresses are provided and a connection setup is
performed (see below), returning a valid stream socket connected to

Off-the-shelf Data Analytics on Serverless CIDR’24, January 14-17, 2024, Chaminade, USA

the named remote function. The query engine process is unaware
of the additional connection setup performed and proceeds just as if
it would have connected to a remote host process. The interposition
layer introduces no data plane performance overhead; no data plane
functions are intercepted, e.g., once a connection is established, all
data writes and reads are processed without the interposition layer
being involved.

In addition to the transparency from the perspective of the in-
dividual query engine processes, we aim to provide a transpar-
ent system orchestration environment. Query engines are com-
posed of sub-services (e.g, head nodes, worker nodes, meta-data
services, coordination services, etc.) that are commonly managed
using container orchestration tools, such as Kubernetes [3], Docker
Swarm [2], or Docker Compose [11]. To allow for orchestration-
level transparency, query engine container images can be derived
from Boxer base images that can be run via native container run-
times or can execute as FaaS instances. In this paper, all experiments
were orchestrated using Docker Compose that either started con-
tainers using container runtimes on EC2 VMs (baseline) or as AWS
Lambda instances (unmodified engines on serverless).

3.3 Network transport
In order for the query engine processes executing in different func-
tions to communicate using the expected socket interface, a network
transport mechanismmust be provided. Most query engines rely on
stream socket semantics to communicate, commonly implemented
by TCP protocol (datagram semantics are not used by any of the
query engines that we inspected.) Unfortunately, commercially
available serverless FaaS platforms do not provide a mechanism
to establish TCP connections where the endpoints are different
function instances. Functions can establish TCP connections to
destinations outside of the FaaS service but not to other functions.
To address this limitation, stream-oriented network transport be-
tween processes running in different functions is provided. The
primarymethod is using TCP connections that are established using
NAT hole-punching techniques. Transport based on IP-forwarding
through EC2 instances is also available1, however, currently, the
NAT hole-punching transport is preferable from a performance
perspective and is used for the stream sockets used by the query
engines in this work.

4 EVALUATION
Wedemonstrate the feasibility of the proposed approach and present
initial measurements of two unmodified existing distributed query
engines, Apache Spark and Apache Drill, running on a commer-
cially available serverless FaaS platform, AWS Lambda. We report
comparative TPC-H benchmark measurements for the two query
engines executing in AWS Lambda functions and AWS EC2 virtual
machines showing that distributed query execution performance
in serverless functions is comparable to that of a class of EC2 in-
stances. We then examine the overhead of the per-query engine
initialization times and propose future improvements.

Both Apache Spark and Apache Drill support large-scale analyt-
ics with distributed query execution. In the conventional mode of

1Other stream transports can be implemented, e.g., ranging from S3 storage to QUIC
network protocol.

AWS S3

AWS Lambda

Function34
Boxer

Spark
Worker32

Function3

Boxer

Spark
Worker1

Function2

Boxer

Spark
Master

Function1

Boxer

Query
Control

(Spark, w32, Q1)

AWS Lambda

Function34
Boxer

Drill
Worker32

Function3

Boxer

Drill
Worker1

Function2

Boxer
Zookeeper

Function1

Boxer

Query
Control

(Drill, w32, Q1)

Figure 2: Experimental setup: Example of (bottom) Apache
Spark (32 workers, master, and query control node) in AWS
Lambda instantiated to execute query Q1 on data stored in
AWS S3. Apache Drill (top) (32 workers, Apache Zookeeper
instance, query control node) instantiated in AWS Lambda
to execute query Q1 on AWS S3.

operation, the systems are run on long-running dedicated clusters
or virtual machines. In contrast to that environment, we intend
to use these systems for serverless data analytics. Therefore we
run these engines using the evolution of Boxer (Section 2) in short-
lived networked AWS Lambda serverless functions. We instantiate
Apache Spark and Apache Drill instances when there is a query to
be run and shut down immediately after producing results.

4.1 Experimental setup
The experiments presented here use the TPC-H dataset at scale
factors(SF) 10, 30 and 100 with data stored in Parquet format, com-
pressed with Snappy, and split into 100MB partitions stored on
AWS S3. The resulting compressed dataset sizes range from 3GB
for SF-10 to 32GB for SF-100, with the largest relation of SF-100
containing 600 million rows.

The AWS Lambda measurements are based on functions with
10GB of memory and 6 virtual cores, the largest AWS Lambda
functions currently available. All query engine nodes and auxiliary
functions (explained below) execute in their own AWS Lambda
functions (Figure 2). In the Apache Spark experiment, there are 8,
16, or 32 worker nodes and a master node. In the case of Apache
Drill, there are 8, 16, or 32 worker nodes and a single-node Apache
Zookeeper [24] instance (also instantiated in a dedicated function)
that Drill relies on for coordination. In addition to the above nodes,
every query engine instantiation includes a query control function

CIDR’24, January 14-17, 2024, Chaminade, USA

Michael Wawrzoniak1 , Gianluca Moro1 , Rodrigo Bruno2 , Ana Klimovic1 , Gustavo Alonso1
1Systems Group, Dept. of Computer Science, ETH Zurich

2INESC-ID/Técnico, U. Lisboa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

20
40
60
80

100
120
140
160
180
200
220
240

Qu
er

y
Ex

ec
ut

io
n

Ti
m

e
[s

]

Spark 8 Workers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

20
40
60
80

100
120
140
160
180
200
220
240

Drill 8 Workers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

20
40
60
80

100
120
140
160
180
200
220
240

Qu
er

y
Ex

ec
ut

io
n

Ti
m

e
[s

]

Spark 16 Workers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

20
40
60
80

100
120
140
160
180
200
220
240

Drill 16 Workers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TPC-H Query

0
20
40
60
80

100
120
140
160
180
200
220
240

Qu
er

y
Ex

ec
ut

io
n

Ti
m

e
[s

]

Spark 32 Workers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TPC-H Query

0
20
40
60
80

100
120
140
160
180
200
220
240

Drill 32 Workers

AWS EC2 AWS Lambda

Figure 3: TPC-H (scale factor 100) query execution times for unmodified Apache Spark and Apache Drill running in AWS
Lambda and AWS EC2. Median times of 3 executions of each query for each configuration, error bars are min. and max. times.

that is responsible for waiting for the query engine to be ready,
submitting the specified query, and waiting for the result.

For each TPC-H query measured, we instantiate all of the above-
described query engine instance functions, run a single query, and
terminate all of the functions. Each TPC-H query configuration
is repeated 3 times. In this experiment, we want to factor out the
effects of using warm functions and caching. To ensure that each
query is started in fresh cold functions, after each query, we reset
the function registrations so that the platform considers them as
new functions, guaranteeing cold starts.

To relate the measurements in AWS Lambda to the virtual ma-
chine environment, we performed the AWS EC2 measurements
in a symmetric way. Instead of AWS Lambda functions, AWS EC2
virtual machines are instantiated. For each query execution we in-
stantiate a new set of EC2 virtual machines, execute a single query
and delete the virtual machines. All measurements are based on
t2.2xlarge EC2 instances configured in unlimited mode (to avoid
possible CPU throttling) and limited by the Linux kernel to 6 vir-
tual cores and 10GB of memory (from 8 virtual cores and 32GB
of memory). We found that virtual machines configured this way

provide similar performance to the AWS Lambda functions that we
use (also with 6 virtual cores and 10GB of memory).

All of the described nodes are configured as container images
derived from Boxer base images. Containers derived from the Boxer
base images can be used by conventional container orchestration
tools, or they can be selectively run as AWS Lambda functions. We
ran all of the benchmarks using the same container images on EC2
instances as AWS Lambda and used Docker Compose [11] as the
container orchestrator for both.

All of the measurements are based on Spark version 3.32, Drill
version 1.21.1, Zookeeper 3.7.1, and Amazon Corretto 17 JVM pack-
age. The systems are not performance-tuned, themeasurements rep-
resent close to out-of-box unoptimized configurations. All measure-
ments were performed on AWS eu-central-1 region using x86_64
CPU architectures.

4.2 TPC-H measurements
Apache Spark and Apache Drill per-query TPC-H measurements
on AWS EC2 and AWS Lambda are shown in Figure 3 and Figure 4.
The main observations from this experiment are that

Off-the-shelf Data Analytics on Serverless CIDR’24, January 14-17, 2024, Chaminade, USA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

20
40
60
80

100
120
140
160
180
200

Qu
er

y
Ex

ec
ut

io
n

Ti
m

e
[s

]

Spark on AWS Lambda

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

20
40
60
80

100
120
140
160
180
200

Drill on AWS Lambda

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TPC-H Query

0
20
40
60
80

100
120
140
160
180
200

Qu
er

y
Ex

ec
ut

io
n

Ti
m

e
[s

]

Spark on AWS EC2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
TPC-H Query

0
20
40
60
80

100
120
140
160
180
200

Drill on AWS EC2

SF 10 SF 30 SF 100

Figure 4: TPC-H query execution times for different scale factors (SF) for unmodified Apache Spark and Apache Drill running
in AWS Lambda and AWS EC2 with 8 workers. Median times of 3 executions of each query for each configuration, error bars
are min. and max. times.

(1.) Unmodified Apache Spark and Apache Drill distributed query
engines can run in AWS Lambda serverless functions,

(2.) the distributed query execution performance in AWS Lambda is
comparable to using a class of networked EC2 virtual machines.

Figure 3 shows observed query execution times for TPC-H SF-
100 for different number of worker nodes (8,16,32), and Figure 4
shows query execution times for different scale factors (SF-10, SF-
30, SF-100) all using 8 worker nodes. Comparing the measurements
based on VMs and functions we make the following observations:

Completeness: First, except for a single case (described below),
the same sets of queries complete successfully on EC2 VMs as on
Lambda functions.

Spark completed all queries on AWS Lambda and EC2 in the
SF-10 and SF-30 measurements and SF-100 with 32 worker nodes.
However, other SF-100 configurations with fewer than 32 workers
did not complete all queries. This is because when Spark was con-
figured with only 8 or 16 worker nodes for SF-100, query 21 could
not complete due to the workers running out of memory. The same
issue was observed on both platforms.

Apache Drill, in all shown configurations except for SF-10, was
unable to complete query 2 due to the workers running out of
memory. The same reason prevented Drill from completing query
21 using 8 workers for SF-30 and SF-100. The same issues were
observed on both platforms. However, in the case of SF-100 in 16
and 32 worker configurations, Drill was able to complete query 21
on EC2 but not on Lambda. This difference is due to AWS Lambda
functions having a limited number of file descriptors available (1024
in total.) For these two configurations, Apache Drill workers at-
tempted to create a sufficiently large number of temporary files that

the file descriptor limit was reached and execution terminated. We
did not find a Drill configuration option to reduce this unusually
large number of temporary files. This is the only case we observed
where the query execution was not possible using AWS Lambda
functions but was possible using AWS EC2 VMs with similar re-
sources.

Dispersion: Second, depending on the data processing system,
query execution times can show a larger degree of dispersion in
Lambda compared to EC2.

There is a significantly larger degree of dispersion in measure-
ments for Spark running in Lambda compared to that in EC2. How-
ever, this difference is not shared by both systems. For Drill, the
observed dispersion levels are similar in Lambda and EC2.

The dispersion level for Spark increases with the number of
workers used, the number of queries where the maximum execu-
tion times is greater than 2× the median execution time is 4, 7 and
11 for 8, 16, and 32 workers configurations respectively (Figure 3).
The dispersion level does not show a significant dependence on
the scale factor for measurements with 8 workers (Figure 4). We
have not yet identified the mechanism that produces this increased
dispersion that is specific to Spark on Lambda, however, it is worth
observing that even in the cases when the difference in median
times between Spark in EC2 and Lambda is significant, the mini-
mum time in Lambda approaches that of EC2, suggesting that if
the high variance can be addressed, the query execution times will
consistently approach those of EC2.

Performance: The query execution times of Spark and Drill vary
but overall are comparable in AWS Lambda functions and EC2 VMs.

CIDR’24, January 14-17, 2024, Chaminade, USA

Michael Wawrzoniak1 , Gianluca Moro1 , Rodrigo Bruno2 , Ana Klimovic1 , Gustavo Alonso1
1Systems Group, Dept. of Computer Science, ETH Zurich

2INESC-ID/Técnico, U. Lisboa

8 16 32
Workers

0

250

500

750

1000

1250

1500

To
ta

l Q
ue

ry
 E

xe
cu

tio
n

[s
] Spark

8 16 32
Workers

Drill

AWS EC2 AWS Lambda

Figure 5: Total time to run all queries (excludes Q2 and Q21)
for SF-100.

Eng. Workers Plat. Median Mean Min Max

Spark 8 EC2 978.76 980.91 965.91 998.08
Spark 8 Lambda 1195.08 1200.31 952.53 1453.30
Spark 16 EC2 731.26 733.52 726.85 742.45
Spark 16 Lambda 1039.12 1034.42 865.39 1198.75
Spark 32 EC2 780.48 820.46 775.76 905.14
Spark 32 Lambda 922.02 1122.65 893.66 1552.27

Drill 8 EC2 1178.38 1187.34 1159.89 1223.75
Drill 8 Lambda 1149.52 1147.24 1131.93 1160.28
Drill 16 EC2 886.40 904.11 874.92 950.99
Drill 16 Lambda 891.85 897.18 871.70 927.99
Drill 32 EC2 1007.71 1003.96 972.75 1031.41
Drill 32 Lambda 794.73 795.77 779.20 813.37

Table 1: Total time to run all TPC-H queries (excludes Q2 and
Q21) for SF-100.

The sums of the query execution times for all TPC-H queries at
SF-100 are reported in Table 1 and Figure 5. Times for each of the 3
executions are summed over all queries, except for queries 2 and
21, which are excluded from the summations because not all config-
urations completed these two queries. The median of the sums for
Spark in AWS EC2 is always faster than in Lambda (between 1.2×
and 1.4×), where the high-variance executions contributed signif-
icantly to the aggregate differences. If only the aggregate of the
minimum times were considered (Figure 3), the difference would
be significantly reduced, showing that if the variance in Spark ex-
ecutions can be addressed, the absolute times between EC2 and
Lambda would be even closer. Apache Drill, exhibiting much less
variance, shows the EC2 and Lambda median of sum times to be
much closer; for 16 workers configuration, the difference is minimal
(under 1.01×) in favor of EC2, and in the case of 8 and 32 workers,
the median of the sum times for Drill is faster in Lambda than in
EC2 configuration, with 1.02× and 1.26× speedup respectively.

Scaling: Relative scaling properties of Spark and Drill are similar in
AWS Lambda andAWSEC2. Scaling query engines by the number of
worker nodes (Figure 5) or by the data set scale factor (Figure 6) does

10 30 100
TPC-H Scale Factor

0

250

500

750

1000

1250

1500

To
ta

l Q
ue

ry
 E

xe
cu

tio
n

[s
] Spark

10 30 100
TPC-H Scale Factor

Drill

AWS EC2 AWS Lambda

Figure 6: Total time to run all TPC-H queries (excluding Q2
and Q21) using 8 worker nodes.

Spark Drill
SF Workers EC2 Lambda L.% EC2 Lambda L.%

SF-10 8 2.35 2.10 0.89 2.94 2.44 0.83
SF-30 8 1.83 1.99 1.09 1.83 1.72 0.94
SF-100 8 1.0 1.0 1.0 1.0 1.0 1.0
SF-100 16 1.34 1.15 0.86 1.33 1.29 0.97
SF-100 32 1.25 1.30 1.03 1.17 1.45 1.24

Table 2: Speedups relative to SF-100 with 8 workers to run
all TPC-H queries as scale factor is decreased (to SF-30 and
SF-10) or as the number of workers is increased (to 16 and 32).
L.% is the fraction of the EC2 speedup achieved by Lambda.

not result in degenerate scaling properties that could be observed
if, for example, the network bandwidth of the Lambda functions
was shared.

Table 2 lists relative speedups achieved by decreasing the scale
factor or increasing the number of workers. The speedups for Spark
and Drill on both EC2 and Lambda platforms are relative to query
execution times of all queries (except Q2 and Q21) for SF-100 and
using 8-worker nodes. The top two rows show the speedup achieved
as the scale factor is decreased to SF-30 and SF-10, and the bottom
two rows show the speedups observed as the number of workers
is increased to 16 and 32 (e.g. the speedup achieved by Spark on
Lambda by decreasing the scale factor from SF-100 to SF-30 while
keeping the number of workers constant at 8 is 1.99). The fraction
of the speedup achieved by Spark on Lambda relative to EC2 ranges
from 0.86 to 1.09, and for Drill from 0.83 to 1.24.

The difference in throughput between Lambdas and the EC2
instances we selected can be a factor in these scaling (and absolute
times) differences. The throughput between the EC2 instances used
is 975Mbit/s (median), and between the Lambda instances, it is
629Mbit/s (median,) both with low variance over time. However, in
the first 5 seconds of Lambda execution, the temporary throughput
can be observed as high as 2.8Gbit/s. As the number of Lambdas
increases, for some of the queries, this temporary burst may help
to accelerate a larger fraction of the execution, in other cases, the
higher steady-state throughput may be advantageous.

Off-the-shelf Data Analytics on Serverless CIDR’24, January 14-17, 2024, Chaminade, USA

10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

(a) Spark in Lambda Engine Start

10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0
(b) Spark in EC2 Engine Start

10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0
(e) Drill in Lambda Engine Start

10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0
(f) Drill in EC2 Engine Start

10 20 30 40
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

(c) Spark in Lambda Query Start

10 20 30 40
time [s]

0.0

0.2

0.4

0.6

0.8

1.0
(d) Spark in EC2 Query Start

10 20 30 40
time [s]

0.0

0.2

0.4

0.6

0.8

1.0
(g) Drill in Lambda Query Start

10 20 30 40
time [s]

0.0

0.2

0.4

0.6

0.8

1.0
(h) Drill in EC2 Query Start

8 workers 16 workers 32 workers

Figure 7: Engine initialization times (details in Section 4.3).

Engine Workers Median Mean Std Dev Min Max

Spark 8 16.46s 20.25s 6.16s 12.54s 35.47s
Spark 16 26.99s 24.50s 5.25s 13.90s 32.90s
Spark 32 28.27s 26.19s 5.32s 14.14s 32.33s
Drill 8 14.28s 14.54s 1.53s 13.01s 25.62s
Drill 16 14.53s 15.46s 2.61s 13.46s 29.17s
Drill 32 17.70s 18.77s 5.40s 13.40s 42.25s

Table 3: Time to submit a query in Apache Spark and Apache
Drill in AWS Lambda. Corresponds to Figure 7(c) and 7(g).

4.3 Query engine initialization
Executing queries in serverless functions involves additional query
engine startup as the engines are instantiated. In the limit, a new
query engine instance can be started to run each query, or an engine
may need to be restarted if the function duration limit is reached
(currently, AWS Lambda functions have 15 minutes duration limit).
We measure the time required to start Apache Spark and Apache
Drill instances from the moment the requested set of AWS Lambda
functions is available to when a query can be submitted for execu-
tion (Table 3).

We subdivide the query engine initialization time into two stages:
the time to start the engine and the time to start processing queries
(’Engine Start’ and ’Query Start’ respectively in Figure 7). The time
to start the engine (’Engine Start’) includes the time for the master
node (in Spark) or Zookeeper (in Drill) to start and for all the worker
nodes to start and join. At this point, we consider the query engine
started but not yet ready to begin query execution. In the next stage
(’Query Start’), each engine needs to be appropriately initialized so
that it can execute the query. In the case of Drill, the table location
catalogmust be updated to reflect the TPC-H tables stored in S3, and
only then the query is submitted for execution. In the case of Spark,
when the cluster is started, it is ready to allocate executors on its
workers for Spark applications. Depending on the Spark API used,

different initialization procedures can follow; in our experiments,
we allocated a single executor per worker and used Spark SQL Scala
API to configure the TPC-H tables and submit the query.

As expected, as the number of workers increases, so does the
time to start the engine and begin the query execution. In the case
of Apache Drill in AWS Lambda, the median times to start query
execution range from 14.28𝑠 to 17.70𝑠 for 8 to 32 workers (Table 3).
However, the observed maximum times are significantly higher, up
to 42.25𝑠 . The distribution of these times, Figure 7(g), shows that
only a small fraction of the Drill initialization times have such high
start times, and we see from Figure 7(e) that the long tail propagates
from the time needed for workers to start. One possible source of
this is the system waiting for straggler workers to join. Since this
delay is before the query execution starts, one possible solution is
to start more workers than required. Once the required number of
workers joins, the remaining slower workers can be released.

In the case of Apache Spark in AWS Lambda, median times to
start queries also increase with worker count, from 16.46𝑠 to 28.99𝑠
for 8 to 32 workers. However, unlike in Apache Drill, we see a
higher degree of dispersion Figure 7(c). We also observe that this
is most likely contributed by the time required for the workers to
join Figure 7(a). Based on comparison with the same measurement
in EC2 Figure 7(b), we see that this level of dispersion is specific to
AWS Lambda, as Spark engine start times in EC2 show significantly
lower dispersion. The above-mentioned approach of starting a small
number of extra workers may be less appropriate here.

A promising and more general solution to the overhead of the
query engine startup time may be to use function snapshots. AWS
Lambda already provides a method of starting functions from pre-
viously taken function snapshots [12]. We believe this could be
adapted to reduce the query engine initialization times. To execute
a query, functions would be configured to start from an already
initialized query engine that is ready for query execution.

CIDR’24, January 14-17, 2024, Chaminade, USA

Michael Wawrzoniak1 , Gianluca Moro1 , Rodrigo Bruno2 , Ana Klimovic1 , Gustavo Alonso1
1Systems Group, Dept. of Computer Science, ETH Zurich

2INESC-ID/Técnico, U. Lisboa

5 DISCUSSION
In this section we consider the reported results from the perspective
of how the cloud has evolved over the years, discuss the limita-
tions of the current system, and briefly explore promising research
directions it opens up.

5.1 Historical Perspective
Functions in today’s FaaS platforms are considered lightweight and
resource-restricted. Relative to the available VMs, they are small; the
largest available AWS Lambda today has only 10GB of memory and
6 vCPUs. From this perspective, running off-the-shelf data analytics
platforms that are designed to run natively on much larger VMs
may seem like a mismatch. However, it is worth considering that
when some of the most popular datacenter systems used today
were originally designed and developed, their target environment
was closer to today’s AWS Lambda functions than to today’s AWS
EC2 VMs. For example, Zookeeper became an Apache Software
Foundation project in 2008 [13] and the Spark project started just
a year later in 2009 [7]. At that time, newly announced AWS EC2
High-CPU instance types [4], c1.medium had 1.7GB of memory and
2 vCPUs, and c1.xlarge had 7GB of memory and 8 vCPUs. When
Zookeeper was commonly used, and just before the Spark project
started, the AWS EC2 ’High-CPU Extra Large Instance’ VM had
comparable CPU and memory resources to today’s AWS Lambda
function.

As these figures show, hardware can evolve faster than soft-
ware, something that is especially true in the cloud. While the
available VMs and supporting platforms have significantly grown,
the underlying system architecture of data analytic engines and
related services (e.g., Zookeeper, Spark) has remained largely un-
changed. This seems to indicate that, possibly with some amount of
re-configuration and tuning, data analytics engines can be a good
match for contemporary networked serverless environments. As we
will discuss later, the combination leads to interesting ideas when
such engines can be quickly instantiated in the type of short-lived
data center provided by serverless functions.

5.2 Limitations
As we have shown in Section 4.3, existing data analytics platforms
(together with the underlying JVM runtime) can have long ini-
tialization times. These initialization times might seem to negate
the benefits of using elastic serverless platforms. However, since
this is a problem that is shared by many other serverless applica-
tions, serverless platforms now offer functionality to accelerate
initialization times by starting functions from previously taken
snapshots [12]. We plan to take advantage of this technique to
accelerate query engine initialization times. For this, we need to
investigate how to leverage the AWS Lambda snapshots to snapshot
and restore collections of networked functions. This will raise a
number of questions. First, what to snapshot - how specific do the
engine configurations have to be when they are snapshotted, e.g.,
do we need to create different snapshots for engines with different
worker counts, or can we dynamically select the number of workers
to be restored. Second, at what point in the query engine initializa-
tion phase do we need to take the snapshots, e.g., to make Spark

available to all types of applications we should snapshot at the en-
gine start time. However, from the difference in between Figure 7(a)
and (c), we see that to use Spark SQL interface we would still need
to pay overhead for the allocation of the appropriate executors to
submit the query. We could create snapshots for different sets of
executor instantiations, so in the case of Spark SQL we can sub-
mit the query right after restoring the snapshots. These questions
need to be studied to successfully leverage the already available
snapshotting technology to reduce the initialization overhead.

Additionally, there are limitations that have an impact on which
use cases are currently a good fit for serverless. Serverless platforms
currently impose a fixed time limit (e.g., AWS Lambda function invo-
cations cannot take longer than 15 minutes) that restricts serverless
use cases to focus on fast-executing queries. Furthermore, serverless
workers usually are not as flexible compared to VMs with regard to
resource bundles as providers typically offer a small set of resource
configurations (e.g., AWS Lambda only allows users to select the
amount of memory, CPU is allocated proportionally). The current
pricing model also narrows down the workload patterns that are
cost efficient compared to long-running engines [30, 31].

The prototype used in this study has limitations that we continue
to address. We are investigating some of the failures we experienced
during the experiments to determine if they are due to errors in the
implementation or if there are additional mechanisms that we need
to implement to improve robustness and scalability. The system C
Library interposition layer does not yet cover sufficient interface
surface area to support all applications. As we experiment with
more query engines, we will expand the support, improve robust-
ness, and cover more of the corner cases. We believe to be close to
supporting a wider range of engines, in particular, we have been
experimenting with Trino [16], Databend [10], and Clickhouse [9],
which will soon become ready to run on serverless like the systems
demonstrated in the paper.

5.3 Opportunities
The proposed approach can be extended to other settings beyond
just running individual (or sets of) queries. For long-running query
engines, sudden bursts of query volume can quickly lead to con-
gestion and, as a result, long response times. We are currently
studying how to use serverless workers as an extension of off-the-
shelf serverful query engine deployments to quickly accommodate
rapid workload fluctuations. In this scenario, serverless networked
functions are used to deploy additional worker instances of a query
engine that are used only for the duration of the workload spike. By
using serverless functions to accommodate such workload bursts,
serverful infrastructure overprovisioning can be significantly re-
duced. Recently, Pixels-Turbo [21] system described a custom sys-
tem where serverless workers can be instantiated to execute sub-
plans to accelerate query execution of VM-based system. However,
in contrast to our approach, specialized serverless query execu-
tors had to be implemented and integrated with Pixels [20] system,
and not taking advantage of function-to-function networking. This
type of rapid scaling into networked serverless functions is not
specific to query engines, other types of data processing systems
(and beyond) can benefit from this paradigm. For example, stream

Off-the-shelf Data Analytics on Serverless CIDR’24, January 14-17, 2024, Chaminade, USA

processing systems such as Apache Flink [6] can reduce their level
of overprovisioning if they can temporarily scale out to networked
Lambda functions to quickly absorb load spikes while handling
steady-state load using the more cost-effective VMs.

The ability to instantiate off-the-shelf data analytics systems
in serverless also has the potential to help take advantage of data
locality by facilitating executing (sub)queries closer to the data.
Long-running VM-based systems could not afford the flexibility to
be fully or partially instantiated close to the queried data on per-
query granularity. Using Boxer, a long-running VM-based system
may be transparently augmented by short-lived serverless workers
instantiated close to a remote data source as queries that reference
it arrive. Depending on the workloads, this may mean instantiating
enough new workers to fully execute the query, or just enough to
perform appropriate data reduction close to the data source. This
can be especially beneficial if the workload is composed of queries
that reference diverse data sources that are close to FaaS platforms,
such as in different regions of a cloud provider or even across
different cloud providers. We have not yet experimented with using
Boxer as a wide-area overlay or across different providers, but we
plan to explore this direction, possibly taking advantage of some
recent cost, latency, and throughput optimization studies [25, 35].

The ability to run existing query engines on serverless gives rise
to a new question - how to choose the right engine and configu-
ration to execute a given query? Factors like expected execution
speed, resource budget, engine configuration options, or feature
sets are just a few of the dimensions that can now be considered at
the per-query granularity, leading to exciting new research oppor-
tunities. As we increase the set of supported query engines, we are
beginning to consider this line of research [43].

Though we advocate for running off-the-shelf applications on
existing commercial serverless platforms, such as AWS Lambda,
it is also important to consider how serverless platforms can and
should evolve to optimize performance and resource efficiency. For
example, Dandelion [28] proposes a declarative serverlesss pro-
gramming model that strictly separates untrusted user compute
functions and platform-provided I/O functions. Dandelion’s pro-
gramming model exposes dataflow to the platform, enabling opti-
mizations like pre-fetching from storage, locality-aware scheduling,
and efficient inter-function communication. We plan to explore
how a serverless platform like Dandelion would enable building
data processing engines directly on top of the declarative function
execution model interface instead of through an overlay like Boxer.
However, it is also worth exploring how to continue providing the
familiar abstractions that traditional data analytics engines expect
while evolving the underlying platform. Boxer may provide a path
to expose the advantages of platforms such as Dandelion to systems
such as data analytics engines that expect the network-of-hosts
programming models.

Depending on the workload, it can be beneficial to augment
the serverless environment with caching. A number of specialized
serverless caching solutions have been proposed [17, 29, 39], some
being able to leverage publicly available systems serverless plat-
forms [34, 41]. Instead of relying on serverless-specific solutions
that work around serverless limitations, we can use unmodified
of-the-shelf distributed caching systems such as Memcached [14] or
Redis [15] to be instantiated alongside data analytics platforms in

our networked serverless functions environment. Beyond improv-
ing single-system performance, especially when multiple queries
fetch common remote data, such caches can be leveraged to reduce
data movement when chaining executions of multiple different
systems together in serverless functions. For instance, when one
system is used for a preprocessing step, followed by data analytics
queries based on a different system, and then machine learning
tasks requiring yet another system, all leveraging the caching sys-
tems running in the networked serverless functions for passing
the intermediate state between the stages. Such pipelines could
be composed of a combination of specialized serverless systems
and off-the-shelf systems running in dynamic sets of networked
functions.

Finally, serverless functions have more limited resources com-
pared to currently available virtual machine options. They can
also be scaled down to very small execution environments (AWS
Lambda as low as 128MB of memory and a fractional vCPUs) that,
for some workloads, might be the right size. Given that the exist-
ing engines target virtual machine environments, there may be an
interesting opportunity to consider supplementing the existing en-
gine workers with variants that are meant to be short-lived, lighter
weight, possibly more limited in functionality, and more specialized
to their target functions and the resource-constrained execution
environments of serverless functions. Introducing these specialized
engine ’worklets’, initially ranging from specialized configurations
of full workers to eventually even single-operator micro-workers,
is a promising trajectory on the path to minimize further the gap
between the existing query engines and the flexibility of serverless.

6 CONCLUSION
This paper proposes a new direction for serverless data analyt-
ics — using existing unmodified off-the-shelf data analytics en-
gines on existing unmodified serverless infrastructure. We validate
the feasibility of the approach by transparently running two such
distributed engines (Apache Spark and Apache Drill) on a com-
mercially available serverless platform (AWS Lambda). Our initial
results demonstrate that these serverless deployments have com-
parable performance to those based on a class of networked VMs,
charting a new way to bridge the gap between existing distributed
query engines and serverless.

REFERENCES
[1] 2020. AWS Lambda. Retrieved 2020-08-17 from https://aws.amazon.com/lambda
[2] 2022. Docker Swarm overview. Retrieved 2022-04-15 from https://docs.docker.

com/engine/swarm/
[3] 2022. Kubernetes. Retrieved 2022-04-15 from https://kubernetes.io/
[4] 2023. Amazon EC2 now provides High-CPU instance types. Retrieved 2023-12-

03 from https://aws.amazon.com/articles/feature-guide-amazon-ec2-high-cpu-
instance-types/

[5] 2023. Apache Drill. Retrieved 2022-10-20 from https://drill.apache.org/
[6] 2023. Apache Flink. Retrieved 2023-03-01 from https://flink.apache.org/
[7] 2023. Apache Spark history. Retrieved 2023-12-03 from https://spark.apache.

org/history.html
[8] 2023. AWS Lambda provisioned concurrency. Retrieved 2023-07-27 from

https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
[9] 2023. ClickHouse. Retrieved 2023-06-20 from https://clickhouse.com/
[10] 2023. Databend. Retrieved 2023-06-20 from https://databend.rs/
[11] 2023. Docker Compose. Retrieved 2023-07-27 from https://docs.docker.com/

compose/
[12] 2023. Improving startup performance with Lambda SnapStart. Retrieved

2023-03-01 from https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html

https://aws.amazon.com/lambda
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://aws.amazon.com/articles/feature-guide-amazon-ec2-high-cpu-instance-types/
https://aws.amazon.com/articles/feature-guide-amazon-ec2-high-cpu-instance-types/
https://drill.apache.org/
https://flink.apache.org/
https://spark.apache.org/history.html
https://spark.apache.org/history.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://clickhouse.com/
https://databend.rs/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html

CIDR’24, January 14-17, 2024, Chaminade, USA

Michael Wawrzoniak1 , Gianluca Moro1 , Rodrigo Bruno2 , Ana Klimovic1 , Gustavo Alonso1
1Systems Group, Dept. of Computer Science, ETH Zurich

2INESC-ID/Técnico, U. Lisboa

[13] 2023. Initial ZooKeeper code contribution from Yahoo! Retrieved 2023-12-03
from https://issues.apache.org/jira/browse/ZOOKEEPER-1

[14] 2023. Memcached. Retrieved 2023-12-03 from https://memcached.org/
[15] 2023. Redis. Retrieved 2023-12-03 from https://redis.io/
[16] 2023. Trino. Retrieved 2023-06-20 from https://trino.io/
[17] Mania Abdi, Sam Ginzburg, Charles Lin, Jose M Faleiro, Íñigo Goiri, Gohar Irfan

Chaudhry, Ricardo Bianchini, Daniel S. Berger, and Rodrigo Fonseca. 2023. Palette
Load Balancing: Locality Hints for Serverless Functions. In Proceedings of the
18th European Conference on Computer Systems (EuroSys). ACM.

[18] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
Virtualization for Serverless Applications. In NSDI.

[19] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. 2019. Stateful Func-
tions as a Service in Action. Proc. VLDB Endow. 12, 12 (2019), 1890–1893.

[20] Haoqiong Bian and Anastasia Ailamaki. 2022. Pixels: An Efficient Column
Store for Cloud Data Lakes. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). 3078–3090.

[21] Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki. 2023. Using Cloud Func-
tions as Accelerator for Elastic Data Analytics. Proc. ACM Manag. Data 1, 2,
Article 161 (jun 2023), 27 pages.

[22] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios Katsifodimos.
2021. Distributed Transactions on Serverless Stateful Functions. In Proceedings
of the 15th ACM International Conference on Distributed and Event-Based Systems.
31–42.

[23] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2019. Serverless Com-
puting: One Step Forward, Two Steps Back. In CIDR.

[24] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-Free Coordination for Internet-Scale Systems (USENIX ATC’10).

[25] Paras Jain, Sam Kumar, Sarah Wooders, Shishir G. Patil, Joseph E. Gonzalez, and
Ion Stoica. 2023. Skyplane: Optimizing Transfer Cost and Throughput Using
Cloud-Aware Overlays. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). USENIX Association, Boston, MA, 1375–1389.

[26] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,
Ankit Singla, Wentao Wu, and Ce Zhang. 2021. Towards Demystifying Serverless
Machine Learning Training. In Proceedings of the 2021 International Conference
on Management of Data. 857–871.

[27] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless
Analytics. In OSDI. 427–444.

[28] Tom Kuchler, Michael Giardino, Timothy Roscoe, and Ana Klimovic. 2023. Func-
tion as a Function (SoCC ’23). 81–92. https://doi.org/10.1145/3620678.3624648

[29] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel Hag-
imont, Noël De Palma, Bernabé Batchakui, and Alain Tchana. 2021. OFC: An
Opportunistic Caching System for FaaS Platforms. In Proceedings of the Sixteenth
European Conference on Computer Systems (Online Event, United Kingdom) (Eu-
roSys ’21). Association for Computing Machinery, New York, NY, USA, 228–244.
https://doi.org/10.1145/3447786.3456239

[30] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In SIGMOD.

[31] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden.
2020. Starling: A Scalable Query Engine on Cloud Functions. In SIGMOD.

[32] Matthew Perron, Raul Castro Fernandez, Michael Cafarella, and Samuel Madden.
2023. Cackle: Analytical Workload Cost and Performance Stability With Elastic
Pools. In SIGMOD.

[33] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In NSDI 19.

[34] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa, Paul Batum,
Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. 2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications.
In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SoCC ’21). Association for Computing Machinery, New York, NY, USA, 122–137.

[35] Noga H. Rotman, Yaniv Ben-Itzhak, Aran Bergman, Israel Cidon, Igor Golikov,
Alex Markuze, and Eyal Zohar. 2022. CloudCast: Characterizing Public Clouds
Connectivity. CoRR abs/2201.06989 (2022). arXiv:2201.06989 https://arxiv.org/
abs/2201.06989

[36] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. 2021. What Serverless Computing is and Should Become:
The next Phase of Cloud Computing. Commun. ACM 64, 5 (April 2021), 76–84.

[37] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. 2021. What Serverless Computing is and Should Become:
The next Phase of Cloud Computing. Commun. ACM 64, 5 (April 2021), 76–84.

[38] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. 2022. Serverless Com-
puting: A Survey of Opportunities, Challenges, and Applications. ACM Comput.

Surv. 54, 11s, Article 239 (nov 2022), 32 pages.
[39] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,

Joseph Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. PVLDB (2020).

[40] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proc. VLDB Endow. 13, 12 (2020), 2438–2452.

[41] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios
Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020. InfiniCache: Exploiting
Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache. In
USENIX FAST.

[42] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In Annual
Technical Conference (USENIX ATC 18). Boston, MA, 133–146.

[43] Michael Wawrzoniak, Rodrigo Bruno, Ana Klimovic, and Gustavo Alonso. 2023.
Ephemeral Per-query Engines for Serverless Analytics. In Joint Proceedings of
Workshops at the 49th International Conference on Very Large Data Bases (VLDB
2023), Vancouver, Canada, August 28 - September 1, 2023 (CEUR Workshop Proceed-
ings, Vol. 3462).

[44] Michal Wawrzoniak, Ingo Müller, Rodrigo Bruno, and Gustavo Alonso. 2021.
Boxer: Data Analytics on Network-enabled Serverless Platforms. In CIDR.

[45] ChenggangWu, Jose M. Faleiro, Yihan Lin, and JosephM. Hellerstein. 2018. Anna:
A KVS for Any Scale. In ICDE.

[46] ChenggangWu, Vikram Sreekanti, and JosephM. Hellerstein. 2020. Transactional
Causal Consistency for Serverless Computing. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (Portland, OR, USA)
(SIGMOD ’20). Association for ComputingMachinery, New York, NY, USA, 83–97.

[47] YunchengWu, Tien Tuan Anh Dinh, Guoyu Hu, Meihui Zhang, YeowMeng Chee,
and Beng Chin Ooi. 2022. Serverless Data Science - Are We There Yet? A Case
Study of Model Serving. In SIGMOD ’22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022.

[48] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (oct
2016), 56–65.

https://issues.apache.org/jira/browse/ZOOKEEPER-1
https://memcached.org/
https://redis.io/
https://trino.io/
https://doi.org/10.1145/3620678.3624648
https://doi.org/10.1145/3447786.3456239
https://arxiv.org/abs/2201.06989
https://arxiv.org/abs/2201.06989
https://arxiv.org/abs/2201.06989

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Distributed Query Engines in Serverless Environments
	3.1 Parallel function execution
	3.2 Application transparency
	3.3 Network transport

	4 Evaluation
	4.1 Experimental setup
	4.2 TPC-H measurements
	4.3 Query engine initialization

	5 Discussion
	5.1 Historical Perspective
	5.2 Limitations
	5.3 Opportunities

	6 Conclusion
	References

