Ephemeral Per-query Engines for Serverless Analytics

Michael Wawrzoniak?, Rodrigo Bruno?, Ana Klimovic! and Gustavo Alonso!

ISystems Group, Computer Science Department, ETH Ziirich, Switzerland
2INESC-ID/Técnico, U. Lisboa

Abstract

We challenge the common assumption that queries are submitted to a pre-configured, already running engine and put forward
the idea of dynamically instantiating a chosen data processing engine upon query submission by leveraging Function-as-a-
Service (FaaS) platforms. We demonstrate the idea by running unmodified data processing engines (we use Apache Drill as an
initial example) on real-world serverless FaaS platforms and show that such engines can be instantiated on demand when
a query arrives. We aim to eventually support a wide range of queries and workloads. Wide access to such functionality
would be a game changer in data processing. First, it would enable pay-per-query models supporting sporadic, interactive
data analysis on arbitrary engines. Second, it would significantly increase the flexibility for data processing by enabling the
possibility of dynamically choosing the actual engine, its configuration, and the resource allocation on a per-query basis.
Logically, this amounts to dynamically attaching a query engine to the query rather than sending the query to a pre-configured
and already deployed engine. In this paper we elaborate on this vision, outline the design of the MetaQ prototype that we
are building to explore the idea, demonstrate that it is realistic through initial experiments, and discuss its many exciting

practical implications.

Keywords

Serverless, Data Analytics, Functions-as-a-Service

1. Introduction

Operating a long-running query engine has several lim-
itations. First, it generates costs even if it is idle. Sec-
ond, most distributed query engines lack elasticity, which
leads to deployments being over-provisioned to cope
with potential peak loads [1, 2, 3]. And third, as work-
load diversity increases, each query might benefit from a
different configuration and/or engine deployment (e.g.,
involving accelerators, caches, parallelism level, etc.), re-
sulting in the engine often running in a less than optimal
setting for most queries [4, 5].

In this paper we explore an ambitious and radically
new design: one in which we take advantage of server-
less computing to provide ephemeral per-query engines
(EPQE), i.e., query engines dynamically instantiated for
each query and discarded upon completion. The ulti-
mate goal is to be able to select the optimal engine and
configuration on a per-query basis, to eliminate the ineffi-
ciencies of using all-purpose configurations and resource
overprovisioning.

In the EPQE paradigm, given a query, a query engine

Joint Workshops at 49th International Conference on Very Large Data

Bases (VLDBW’23) — Workshop on Serverless Data Analytics (SDA’23),

August 28 - September 1, 2023, Vancouver, Canada

& michalw@inf.ethz.ch (M. Wawrzoniak);

rodrigo.bruno@tecnico.ulisboa.pt (R. Bruno); aklimovic@ethz.ch

(A. Klimovic); alonso@inf.ethz.ch (G. Alonso)

@ 0000-0002-1304-8420 (M. Wawrzoniak); 0000-0003-1578-5149

(R. Bruno); 0000-0001-8559-0529 (A. Klimovic);

0000-0002-4396-6695 (G. Alonso)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

===1 CEUR Workshop Proceedings (CEUR-WS.org)

is instantiated (potentially selected from a variety of en-
gines) in the best possible configuration and deployment
for the query, the query is executed by the engine, and
upon completion, the engine is shut down (unless there is
a reason to keep it running, like a similar query arriving
while the engine is active). This eliminates the need for
dynamic elasticity in the engine. Every query gets an en-
gine deployed on just the resources it needs (e.g., nodes,
memory, bandwidth, CPUs). This also simplifies engine
deployment (since the engine can be instantiated specifi-
cally for the query at hand, e.g., maximizing data source
locality) and removes the need for auto-tuning [5] of
long-running engines (the engine settings need to be op-
timized only for the given query, which allows for more
specialized and efficient solutions [6]). The approach also
eliminates the problem of idle resources since if there is
no query, there is no engine running. Finally, another
crucial aspect of the idea is the possibility of selecting
among different data processing engines on a per-query
basis. This opens up the opportunity to use different
engines depending on factors like data types (e.g., rela-
tional, semi-structured, graphs), file formats used (e.g.,
Arrow, Parquet, CVS, JSON, etc.), expected performance
(e.g., based on previous profiling), feature set (e.g., avail-
ability of required statistical functions), or suitability to
the overall task (e.g., when the query is a step in an
ML pipeline). The idea resembles unikernel operating
systems [7] where, for each application, a specialized
operating system is constructed (e.g. from a library oper-
ating system [8]) and instantiated, already optimized for
the application.

The vision of EPQE is enabled by the emergence of

mailto:michalw@inf.ethz.ch
mailto:rodrigo.bruno@tecnico.ulisboa.pt
mailto:aklimovic@ethz.ch
mailto:alonso@inf.ethz.ch
https://orcid.org/0000-0002-1304-8420
https://orcid.org/0000-0003-1578-5149
https://orcid.org/0000-0001-8559-0529
https://orcid.org/0000-0002-4396-6695
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

FaaS

API Proxy

SM - session manager
MO - meta-system optimizer
PP - platform provider

Storage

g
1

&2

©-&®
S
©-©-&©

Figure 1: MetaQ system prototype mode of operation (see Section 2 for details).

Function as a Service (FaaS). In serverless computing,
users deploy and invoke fine-grain functions on-demand [9,
10]. There are three main characteristics of serverless
that can help in realizing the EPQE idea. First, thanks
to lightweight VM system infrastructure [11, 12], func-
tions can be instantiated quickly. For example, in AWS
Lambda [13], function cold start initialization latency is
~200ms. Such fast resource instantiation times allow
starting a new engine for a query without contributing
significantly to the overall execution time. Second, in-
dividual functions can be deployed with different CPU
and memory configurations. Furthermore, thousands of
functions can be instantiated in parallel. Such a level of re-
source availability and configurability allows us to right-
size and right-configure engines at per-query granularity.
Finally, FaaS platforms provide fine-grained resource ac-
counting (e.g., AWS Lambda users pay at microsecond
granularity), aligning the costs of the EPQEs to the work
done and can play a role in deciding which engine to
instantiate.

However, despite their advantages, today’s FaaS server-
less platforms are not adequate for general data process-
ing [14, 15] since running queries often requires features
that are missing, such as caching, support for direct com-
munication among functions, and persistent state. This
is the result of a conscious choice by providers who bun-
dle functions with a very restricted programming model
based on network-isolated, event-triggered modules com-
posable into larger systems through workflow-based or-
chestration services [16, 17]. To overcome this mismatch,
a significant research effort is underway. One approach
involves redesigning serverless platforms from scratch
and developing a completely new FaaS platform to be
run on VMs (e.g., Anna key-value store [18]). Another
approach relies on commercial serverless FaaS$ offerings
and tries to overcome some of the platform shortcom-
ings from a data processing [19, 20] or ML [21, 22] per-

spective. These systems propose, among other things,
complex ways to reduce the overhead of communicating
through cloud storage, clever optimizations to minimize
the amount of data exchanged, and suggest algorithms
to reduce the impact of start-up times as the number of
functions needed grows. In addition, there are efforts to
leverage commercial serverless FaaS offerings to provide
caching and storage services to data center applications
running outside of the serverless functions [23, 24].

Unlike these existing efforts that build custom experi-
mental FaaS query engines to circumvent the limitations
of serverless platforms, our approach is to leverage exist-
ing serverless infrastructure to run unmodified state-of-
the-art data processing systems. By including existing
unmodified engines, we will be able to take advantage
of their wide variety, feature completeness, and years
of effort put into their development and optimization.
However, all of the real-world FaaS platforms that we
are aware of do not provide execution environments that
support running off-the-shelf distributed query engines.
Our approach is to leverage an evolution of the Boxer [25]
system, which aims to overcome FaaS limitations (e.g.,
by enabling inter-function networking) to provide an
execution environment on top of existing commercial
FaaS platforms (such as AWS Lambda) that matches the
requirements of unmodified off-the-shelf query engines.

To explore the feasibility of the EPQE concept, in this
paper we investigate whether (1) it is already possible to
run existing query engines on a commercial serverless
system (AWS Lambda); (2) whether the resulting per-
formance is acceptable since existing distributed query
engines have not been originally designed to operate on
top of serverless functions; and (3) get an initial idea of
whether selecting engines on a per-query basis would
bring an advantage. We build a prototype system, MetaQ,
as a way to realize the EPQE model and conduct a feasi-
bility study.

Our focus is on distributed data processing platforms,
such as Apache Spark or Apache Drill, instead of tradi-
tional database engines, such as PostgreSQL or MySQL.
We do not analyze the cost tradeoffs of using AWS Lambda
for data analytics, previous works [19, 20] established
that serverless can reduce costs for bursty query work-
loads. In particular, steady, similar, high-throughput
workloads are better served by long-running systems
utilizing more cost-effective infrastructure than AWS
Lambda (e.g., AWS EC2 virtual machines).

We report the result of using an unmodified version
of Apache Drill [26] in a distributed configuration over
serverless FaaS and its performance running the TPC-
H benchmark. This initial experiment shows that the
EPQE approach is feasible and, for all but one query, exe-
cuting the query with the ephemeral approach is faster
than the time it takes to simply instantiate a system with
matching configuration over AWS Fargate [27]/Elastic
Container Service (ECS) [28] (without even starting to
run any queries). We study the start-up time of a query
processing engine in this context to examine its practical
feasibility. Finally, we also discuss preliminary results
that indicate that some queries run faster in one engine
(Apache Drill) than in others (Apache Spark [29]) and
vice-versa, providing initial evidence that the per-query
engine selection approach can bring important advan-
tages.

2. MetaQ Prototype

We first outline the design of the MetaQ prototype, a
proof of concept design of the EPQE paradigm.

MetaQ has three main components: session manager
(SM), platform provider (PP), and meta-system optimizer
(MO). The session manager oversees end-to-end query
execution and its resources, including handling communi-
cation with the client. The platform provider orchestrates
the required resources and configures the environment re-
quired for the query engine execution. The meta-system
optimizer is used to determine the complete specification
of the resources, the query engine to be used, its con-
figuration, and possibly engine-specific query rewriting.
In cases when users specify the complete specification,
the meta-system optimizer can be bypassed since the
execution is fully specified.

Figure 1 illustrates query execution in MetaQ. To ex-
ecute a query, a user (step (D) starts MetaQ and speci-
fies the query and (optionally) the specifications of the
query engine and resources to use for the query exe-
cution. MetaQ launches as a serverless FaaS function
that can be instantiated on demand via a request to an
API proxy service of a cloud provider (such as AWS API
Gateway [30]).

MetaQ begins by instantiating the session manager

(SM) for the given query. If the user-supplied specifica-
tions of the query engine or resources are not complete
or are left underspecified, then (step (2)) the meta-system
optimizer (MO) is used to choose all of the missing speci-
fications. The specification has three elements:

(a) the initial resource allocation (e.g., where, how,
and how many configured AWS Lambda func-
tions should be started),

the query engine to use (such as Apache Drill,

Apache Spark, Trino [31], etc.),

(c) the configuration of the query engine instantia-
tion, including auxiliary systems such as Zookeeper
[32] (e.g., mapping of engine executors onto the
resources, configuring engine settings, required
storage plugins, etc.)

(b)

Once the complete specification is determined, it is used
to instruct the platform provider (PP) (step (®) to instan-
tiate and configure the specified resources and then start
the configured query engine processes (and any auxil-
iary systems). The platform provider (step @), using the
specification of initial resource allocation (a), requests
the resources from the underlying platform, such as net-
worked FaaS$ functions, configures their networking, and
assigns necessary names, roles, and ids to function in-
stances. The query engine specification (b) determines
which function (or container) images are instantiated
from the available catalog. Finally, before the platform
provider starts the query engine, the specification of the
query engine configuration (c) is used to populate the
necessary configuration files and environment variables
for the query engine.

Once the engine is started and ready to process queries,
the session manager (step () submits the user query and
awaits the results from the execution engine. When the
query execution completes, the session manager retrieves
the results (step (6)) and returns them to the user (step (7).
When the query execution completes, all of the resources
are released, and the system scales back to zero.

We assume that the persistent data is stored in stan-
dard formats (such as Parquet, ORC, Avro, CSV) and is
available through cloud storage services compatible with
the common query engines (such as S3 or EBS). We re-
strict the set of distributed query engines considered to
ones that can be used in such networked shared-disk
configurations.

Our current prototype of MetaQ uses AWS Lambda
Faa$S functions. To run off-the-shelf query engines de-
spite the restricted function execution environment, we
utilized Boxer to provide the required but missing func-
tionality. Boxer is a system that runs standard datacen-
ter applications in FaaS environments, providing the ex-
pected network-of-hosts execution model. Boxer runs in
every function, alongside the application processes, and

(=)}
o

w
o

w
o

Execution Time [sec]
N
o

N
o

=
o

Startup

Query Executution
Fargate/ECS/EC2 min. billable
Fargate/ECS Init

12 13 14 16 17 18 20

TPC-H Query

Figure 2: TPC-H (scale factor 10) query execution times of unmodified 8 worker node Apache Drill running on AWS Lambda
functions. Bars are medians of 5 executions of each query. The fraction of time consumed by system startup is shown inside
the bars. The error bars show the minimums and maximums for the query execution times only. The minimum billable time
for EC2/ECS, and median time to only instantiate a comparable AWS Fargate/ECS container are shown for comparison.

establishes an ephemeral network between the partici-
pating functions. Boxer executes unmodified application
processes (query engines and any auxiliary systems) in a
Faa$S environment while transparently exposing function-
to-function networking via the standard POSIX interfaces
(stream sockets etc.). To facilitate configuring the unmod-
ified distributed query engines in FaaS, Boxer is used to
assign roles to functions, provide name resolution, host
membership, and coordinate query engine process execu-
tion. The collection of these Boxer features provides an
execution environment in AWS Lambda FaaS$ that closely
matches what is expected by distributed query engines.

Although we show how MetaQ can run in FaaS envi-
ronments, its design is not tied to them. For example,
MetaQ’s components (SM,MO,PP) could execute locally
on the user’s computer, and then could provide (a sub-
set of) standard client protocols that many distributed
query engines often expose (such as PostgreSQL stan-
dard wire protocol or JDBC). Independently, there could
be different platform providers (PP) giving access to dif-
ferent types of resources for query execution, from the
user’s local resources (useful for smaller workloads) to
serverless container services such as AWS Fargate or
future serverless platforms that may provide access to
heterogeneous hardware accelerators.

3. Feasibility study

3.1. Methodology

To validate the real-world feasibility of the EPQE paradigm,
we experiment with some of the basic components of the
MetaQ prototype design. We focus our analysis on the
technical feasibility of MetaQ rather than analyzing its
cost tradeoffs, [19, 20] have shown that serverless can

reduce costs for bursty query workloads. For this study,
we chose to use a variant of Boxer as our MetaQ platform
provider (PP) component, which allowed us to instantiate
networked systems using AWS Lambda. For this initial
validation, we assumed that along with every considered
query, the user specifies the complete system specifi-
cation (resource allocations, query engine specification,
and configuration). This bypasses the meta-engine opti-
mizer(MO), which we plan to explore in the next stages
of our research.

We experiment with per-query instantiations of Apache
Drill, a general-purpose distributed SQL engine inspired
by Google Dremel [33]. We used the TPC-H benchmark
to simulate the user queries to be evaluated using MetaQ.
Using the benchmark tools, we populated S3 cloud stor-
age with data set at scale factor 10, resulting in 12 GBytes
of data and with the largest relation with almost 60 mil-
lion tuples. Each TPC-H query evaluation request was
accompanied by the complete query system specification
specifying (a) resources for 10 AWS Lambda functions
with 6 vCPUs, x86_64 architecture, and 10GB of mem-
ory each, (b) Apache Drill as the query engine (the only
engine option in our experiment), and (c) stock config-
uration options for Apache Drill worker nodes, a head
node, and a single Apache Zookeeper node (required by
Apache Drill).

The experiment emulates a session manager (SM) that
uses the Boxer system as the platform provided (PP) to
instantiate resources on AWS Lambda and to start Apache
Drill nodes (and Zookeeper). The experimental session
manager then waits for the query system to be available,
and then submits the query and waits for the results,
and returns on completion. In this study, to factor out
the effects of function caching, we ensure that only cold
functions are used for each query.

3.2. End-to-end query latency

Figure 2 shows the median end-to-end query execution
times. Without optimizing the Drill configuration, the
observed median end-to-end query execution times were
between 30.42s and 65.13s seconds. (Not all of the TPC-
H queries were able to run on Drill with the current Boxer
variant due to its limit of less than 1024 file descriptors
available to Drill, while for some queries, Drill required
more.) For comparison, if we chose an alternative plat-
form provider (PP) based on a serverless container service
such as AWS Fargate (using AWS Elastic Container Ser-
vice(ECS), or AWS Elastic Kubernetes Service(EKS) [34])
we expect the execution times to be significantly higher.
Such container services are not optimized for startup
times, and their implementations rely on EC2 for on-
demand resource allocation. We observed that the me-
dian time to just instantiate a comparable (serverless)
container (8GBytes of memory, with 1024MBytes image
size) using AWS Fargate/Elastic Container Service(ECS)
is 54.9s (dashed line in Figure 2). This means that by the
time the ECS container only begins to start the query
engine, all but one of the queries executed by MetaQ are
already finished, and the resources are already released.
Furthermore, the minimum billable duration for AWS
Fargate/ECS is 1 minute, while AWS Lambda billing is at
1ms granularity with no set minimum.

Takeaway 1: MetaQ improves performance and re-
duces resource usage by instantiating per-query data
processing engines on Faa$ infrastructure compared to
containers or virtual machines.

Figure 2 shows that a significant fraction of the query
execution is consumed by the startup time. The median
time for the system to become ready to start executing
a query is 19.67s, and (in terms of median values) that
consumes between 30% (for query 9) and 67% (for query
6) of the total execution times for the queries we tested.
There are many techniques that can be used to reduce
this time (we have not optimized it in this experiment
at all), from configuring the system to avoid starting
unnecessary components to snapshotting JVM state [35,
36, 37]. Fortunately, because faster startup times are
desirable for other use-cases of FaaS platforms as well,
recently AWS Lambda started to offer ability to fully
snapshot the initial function state to avoid this issue [38].
We have not yet explored this feature, so the current
results with FaaS should be treated as a conservative
upper bound since there are further optimizations that
we can enable, such as restoring from snapshots.

Takeaway 2: MetaQ does not interfere with poten-
tial optimizations that cloud providers could introduce
to FaaS. Its performance will only improve with these
optimizations, giving it an even bigger advantage over
current solutions.

=
=]

K
0.8
§o06
B
o
3
204
0.2
0.0 20 25 30 35 40 45

Startup time [sec]

Figure 3: Empirical CDF of the observed system startup times
of all instantiations in the experiment. The time from resource
instantiation to the time when the 8-worker-node Apache
Drill system is ready to start executing the query.

3.3. Engine startup time

We also examined the variance of the query execution
times and startup times. The error bars in Figure 2 show
the maximum and minimum times for each query execu-
tion time relative to the median of the startup time (the
variance due to the startup time is factored out). We ob-
serve a noticeable, but acceptable, variance in the query
execution time, with the majority of the queries having
median execution times within 10% of the slowest and
fastest executions. The highest observed dispersion was
for Query 20, with the slowest observed execution being
18% slower than the median.

However, when we inspect the distribution of all of the
startup times during the experiment, shown in Figure 3,
we observe significantly higher variance (note that in
this experiment, the startup time is independent of the
executed query since the client always specifies the same
complete specification with each query request, so we
do not factor the startup times by query executed.) The
startup times ranged widely from 17.78s to 47.02s. In
particular, the measurements form two groups; of the
total of 70 measurements, the top 5 times (grey area in
Figure 3) were above 43s, while all the remaining runs
needed less than 27s to start executing the query. Our
initial investigation into the source of this variance indi-
cates that its main contributor is the time for the Apache
Drill workers to become available after their processes
are started. Since the variance does not persist to the
query execution times, it suggests that these stragglers
are not due to their function execution context being (per-
manently) resource constrained. It is possible that these
functions had to fetch base images from a deeper storage
hierarchy as the worker processes were loading blocks of
data during startup. This suggests that the meta-system
optimizer (MO) strategies should consider the possibility
of instantiating additional workers to compensate for

this straggler phenomenon. Once enough workers are
available, MetaQ could then terminate the unnecessary
stragglers. A similar technique is already performed in-
ternally by Boxer platform provider. Boxer, depending
on configuration, already instantiates additional func-
tions and proceeds only with the requested number of
functions that became available first and immediately
terminates the rest of the slower and unnecessary func-
tions. Notice that these techniques that discard stragglers
are feasible using FaaS because of the fine granularity of
accounting and no minimum billing time.

Takeaway 3: Although limited in scope, the experi-
ment demonstrates the real-world feasibility of the per-
query engine paradigm. This very simple experiment
leaves many possibilities for future improvements, but
it already highlights the potential of our vision and mo-
tivates the further exploration of the design space and
future work on the MetaQ prototype.

3.4. Selecting Query Engines

A key aspect of the EPQE is the possibility of choos-
ing a different engine for each query. Although fur-
ther investigation is necessary, our preliminary com-
parison of query execution times of Apache Drill and
Apache Spark, indicates that there likely will be a per-
formance gain from choosing different engines on per-
queries granularity. We measured the query execution
times of TPC-H scale factor 30 for Apache Drill and
Apache Spark using 8 AWS Lambda worker nodes. Ig-
noring the startup times and only based on the relative
query execution times, we observe that for 14 of the
queries (1,4,5,6,7,9,10,11,12,13,15,16,17,22) Drill notice-
ably outperformed Spark, for 3 queries (14,19,20) Spark
outperformed Drill, for 2 queries (8,18) perfromance was
similar, while 3 queries were completed by only one of
the two engines (2,21 Spark only, 3 Drill only.) These
initial results suggest that, indeed, the notion of instanti-
ating a different engine depending on the query can be
beneficial. This opens up very interesting research ques-
tions in terms of how an optimizer could decide which
system to use.

4. Use Cases

In this section we explore use cases that could be either
implemented on top of the prototype of MetaQ or would
require additional work on several aspects of the system
and further research.

4.1. More Efficient Data Analytics

There is a growing amount of work exploring how to best
use commercial serverless platforms for data analytics.

Lambada [19] and Starling [20] both offer a data-analytics
platform on top of serverless. Others have explored the
benefits and pitfalls of running ML training and inference
on Faa$S [21, 22]. In all these cases, a major limitation
is that serverless functions are stateless and exchange
data through remote storage services (e.g., S3). Hence,
for each query or task deployed on FaaS, a significant
portion of time is spent reading/writing data from/to stor-
age. Complex queries that require shuffling data become
even more of a problem by requiring multiple rounds of
access to storage servers, thereby further increasing the
overhead. A lot of prior work focuses on how to miti-
gate the data-passing limitations of Faa$ infrastructure
by constructing custom experimental systems.

A first contribution and potentially the first application
of the idea behind MetaQ is that it aims to run existing
platforms without having to wait until a suitable new
data processing or ML engine is developed matching the
characteristics of serverless. Our approach enables run-
ning complex data processing tasks at a large scale using
existing mature systems, using a variety of engines tai-
lored to the query and data at hand, and deploying at the
scale needed while still maintaining all the advantages
of serverless.

4.2. Dynamically Extensible Engines

Data processing engines, such as traditional relational
databases or many SQL-centric distributed platforms,
are limited along two dimensions. One is in terms of
deployment, as only one configuration is available at
any time. This leads to overprovisioning to make sure
the system can cope with any possible workload. The
other is in terms of functionality. Very often, data is
processed in these engines and then needs to be moved
to other systems for further processing (e.g., ML training,
statistical analysis, visualization).

MetaQ can be used as an extension of existing engines
to address these two problems. In the same way we
show that one can launch a complete data processing
system on serverless when a query arrives, an existing
engine running on a VM could do the same to trigger ad-
ditional capacity when necessary. For example, the basic
mechanism presented here can be used to have Apache
Drill launch additional ephemeral engines when the long-
running system is not able to cope with the additional
load. Recently, a similar approach has been explored by
modifying an existing system, Pixels-Turbo [39] is an ex-
tension of a Pixels [40] query engine that can instantiate
query engines in AWS Lambda function to add elasticity
to the system instantiated on long-running VMs. In the
case of missing functionality for some tasks, the tran-
sition to another system can be done by triggering the
corresponding system once the data processing engine
finishes. This eliminates the need to have both systems

running all the time and helps to automate the process
rather than copying the data and transferring it manually
to the other system (and then copying results back).

Complementary to these ideas is the notion of deploy-
ing a minimalist system (i.e., requiring much fewer re-
sources) on a permanent infrastructure using VMs and
then using the mechanisms of MetaQ to launch a more
complete version of the system (or one tailored exactly
to the task at hand) when queries arrive that require the
more advanced functionality.

4.3. User-owned Data Analytics Stack

Cloud providers offer a set of Query-as-a-Service plat-
forms, such as AWS Athena [41], which provide a simpli-
fied interface for large-scale analytics and charge users
per byte read. However, users may still prefer to run
their queries on a data analytics stack that they fully
control (e.g., to optimize parameters and hardware con-
figurations for their workloads). MetaQ enables users to
run their own data analytics stack while still benefiting
from simple abstractions and a convenient pay-per-query
cost model, as resources can be acquired and released
on-demand in response to load. As Palkar and Zaharia
point out, users may also prefer to run their own ana-
lytics engines and web services rather than relying on
out-of-the-box cloud solutions for privacy reasons [42].
This is especially true when queries involve UDFs, as
these are more difficult to securely isolate in shared in-
frastructure deployments. By operating their own data
analytics stack, users get to control how the system is
configured and monitor how they are billed for the work
performed for a particular task.

4.4. Data Lakes

Data Lakes refer to collections of heterogeneous data that
needs to be processed in a variety of different ways. The
problem with this notion is that the processing is also
highly heterogeneous, and it is the user who is responsi-
ble for handling it. Lakehouses is a new iteration of the
concept that incorporates the data processing as a first-
class citizen and provides support for different engines,
languages, etc., while automating as much as possible
the task of matching data to engines and tools [43].
MetaQ is well-suited to Lakehouses as it enables dy-
namically selecting the engine and processing tools on
the fly, and this can be done on the basis such as data
types, data sizes, type of query, user requirements, or
cost, etc. Furthermore, the per-query engine vision en-
ables an intriguing possibility: sharing of auxiliary data
structures across engines (indexes, partitions, zone maps,
etc.) as well as creating a general infrastructure that is
engine agnostic (e.g., a main memory caching layer for

data to avoid having to retrieve it from slow storage ev-
ery time or a results cache). Such infrastructure exists,
but it is typically system specific. MetaQ opens up the
possibility of seeing these aspects as orthogonal to the
actual engine. In the extreme, all common modules of
query engines could become serverless components dy-
namically added to an engine as it is instantiated with
the query-specific functionality.

5. Research Opportunities

The idea of EPQE behind MetaQ opens a number of in-
teresting research directions which we now highlight.

5.1. The Meta-Engine

EPQE unlock a number of opportunities when it comes
to selecting the most appropriate engine for each query.
This can be done in a very simple manner by, for in-
stance, asking the user to specify which engine to use.
However, we are interested in automating the selection
process by building an end-to-end query system that
handles this. In a scenario where users write queries in
an engine-agnostic syntax (for example, in a declarative
language such as SQL), MetaQ’s meta-system optimizer
could inspect the query and determine which engine is
the most efficient given the data types, its type (static
or streaming), the type of operations required, etc. This
leads to cross-engine optimizations, such as picking the
engine that is faster to perform a given operation pro-
vided by several engines. The main research question
is how to derive meta-system optimizer policies. One
possible approach is to extend the domain of automatic
configuration systems [5] with the additional tasks of
choosing not just configuration parameters for a query
engine, but also the choice of the query engine itself
and resource allocation based on the query considered,
eventually realizing the vision of vertically integrated
per-query optimization.

5.2. Autoscaling Per-query Deployments

With a new deployment being launched and shut down
per query, it is now possible to optimize the deployment
where the engine will run for every query. Such de-
ployment configuration could determine the amount of
resources used, such as the CPU and/or memory budget.
Such configuration could be inferred by analyzing the
query and data inputs to estimate the amount of data that
would be processed and, therefore, the amount of com-
pute and memory necessary to finish the query within
a particular time frame. From another perspective, it is
now possible to dynamically find tradeoffs between exe-
cution time and price for each query. This tradeoff could

also be exposed to users as a way to prioritize interactive
queries over batch workloads.

5.3. Query Scheduling and Caching

Beyond automatically sizing and optimizing per-query
deployments, it is also possible to schedule query execu-
tion on nodes that have some locally cached data or that
are close to storage nodes. For example, if a workload re-
quires two queries to be executed, the second query could
be scheduled for execution on the same physical node(s)
that was used to execute the previous one. To keep data
local, caching approaches such as Faa$t cache [44] can
also be used to keep the output of queries.

5.4. System Infrastructure

To implement inter-function communication, MetaQ pro-
totype uses Boxer as its platform provider. Boxer (and
therefore MetaQ) do not require any cloud provider in-
tervention and can be deployed today in AWS Lambda.
However, Boxer is not yet feature complete in terms of
interfaces, networking support, reliability, and integra-
tion within larger systems. That is something that we
are working on at the moment so as to have a more
solid basis for the system. Similarly, Boxer was initially
built for AWS Lambda. We are in the process of study-
ing how to port Boxer to other commercial serverless
offerings. Doing so would open yet another wave of ex-
citing opportunities, like triggering serverless jobs across
heterogeneous clouds using the networking capabilities
available in Boxer.

5.5. Generalizing to Other Engines

Our experiments are only a first step towards the per-
query engine vision. We plan to test this paradigm and
our MetaQ prototype on a wider range of data processing
engines and platforms on top of the existing prototype
to make sure it can indeed be used as a general-purpose
distributed computing platform equivalent to what can
be done on a VM. Systems that we are in the process
of testing include Apache Spark, Trino, Databend [45],
Flink [46], Clickhouse [47]. Having them running on the
same serverless platform will also offer a great opportu-
nity to study the engine designs that are most suitable
for serverless, providing very valuable information on
the road toward serverless native engines.

6. Conclusion

Distributed data processing engines often require to have
a fixed underlying infrastructure to run in the form of
pre-allocated VMs, Virtual Private Networks, and other

services provided by the cloud. This results in ineffi-
ciencies that are difficult to address: over-provisioning,
coarse resource allocation, generic engine configurations,
low utilization, etc. In this paper, we put forward the idea
of ephemeral per-query engines: selected query engines
dynamically instantiated when a query arrives and re-
moved when it terminates. In the paper, we have outlined
the idea, discussed its potential to address many of the
limitations of current deployments, provided a feasibility
study, and demonstrated that, while there is still much
work to do, it is possible to implement it in current FaaS
platforms. The initial experiments are highly encourag-
ing. They show that existing engines can be sufficiently
quickly instantiated on demand to run a single query.
Building on this basis, we have also discussed and pre-
sented several research directions that can be pursued
based on the ideas and results presented here.

References

[1] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong,
A. Motivala, T. Cruanes, Building an elastic query
engine on disaggregated storage, in: Proceedings of
the 17th Usenix Conference on Networked Systems
Design and Implementation, NSDI'20, USENIX As-
sociation, USA, 2020, p. 449-462.

Z. Tan, S. Babu, Tempo: Robust and self-tuning
resource management in multi-tenant parallel
databases, Proc. VLDB Endow. 9 (2016) 720-731.
S. Das, F. Li, V. R. Narasayya, A. C. Kénig, Auto-
mated demand-driven resource scaling in relational
database-as-a-service, in: Proceedings of the 2016
International Conference on Management of Data,
SIGMOD ’16, 2016, p. 1923-1934.

A. Augusta, S. Idreos, Jafar: Near-data processing
for databases, in: Proceedings of the 2015 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’15, 2015, p. 2069-2070.

D.V. Aken, D. Yang, S. Brillard, A. Fiorino, B. Zhang,
C. Billian, A. Pavlo, An inquiry into machine
learning-based automatic configuration tuning ser-
vices on real-world database management systems,
Proc. VLDB Endow. 14 (2021) 1241-1253.

Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song,
Y. Yang, Bestconfig: Tapping the performance po-
tential of systems via automatic configuration tun-
ing, Association for Computing Machinery, New
York, NY, USA, 2017.

A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand,
J. Crowcroft, Unikernels: Library operating sys-
tems for the cloud, Association for Computing
Machinery, New York, NY, USA, 2013.

[8] S.Kuenzer, V.-A. Bidoiu, H. Lefeuvre, S. Santhanam,

(7]

A. Jung, G. Gain, C. Soldani, C. Lupu, c. Teodorescu,
C. Raducanu, C. Banu, L. Mathy, R. Deaconescu,
C. Raiciu, F. Huici, Unikraft: Fast, specialized
unikernels the easy way, Association for Comput-
ing Machinery, New York, NY, USA, 2021.

J. Schleier-Smith, V. Sreekanti, A. Khandelwal,
J. Carreira, N. J. Yadwadkar, R. A. Popa, J. E. Gon-
zalez, I. Stoica, D. A. Patterson, What serverless
computing is and should become: The next phase of
cloud computing, Commun. ACM 64 (2021) 76-84.
P. Castro, V. Ishakian, V. Muthusamy, A. Slominski,
The rise of serverless computing, Commun. ACM
62 (2019) 44-54.

A. Agache, M. Brooker, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, D.-M. Popa, Firecracker:
Lightweight virtualization for serverless applica-
tions, in: NSDI, 2020.

L. Ao, G. Porter, G. M. Voelker, Faasnap: Faas made
fast using snapshot-based vms, Association for
Computing Machinery, New York, NY, USA, 2022.
AWS Lambda, 2020. URL: https://aws.amazon.com/
lambda, (accessed: 2020-08-17).

J. M. Hellerstein, J. M. Faleiro,]J. Gonzalez,
J. Schleier-Smith, V. Sreekanti, A. Tumanov, C. Wu,
Serverless computing: One step forward, two steps
back, in: CIDR, 2019.

L. Wang, M. Li, Y. Zhang, T. Ristenpart, M. Swift,
Peeking behind the curtains of serverless platforms,
in: Proceedings of the 2018 USENIX Conference
on Usenix Annual Technical Conference, USENIX
ATC ’18, 2018.

AWS Step Functions, 2023. URL: https://aws.
amazon.com/step-functions/, (accessed: 2023-03-

01).

Azure Durable Functions, 2023. URL:
https://learn.microsoft.com/en-us/azure/
azure-functions/durable/, (accessed: 2023-03-

01).

V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E.
Gonzalez, J. M. Hellerstein, A. Tumanov, Cloud-
burst: Stateful functions-as-a-service, Proc. VLDB
Endow. 13 (2020) 2438—-2452.

I. Miller, R. Marroquin, G. Alonso, Lambada: Inter-
active data analytics on cold data using serverless
cloud infrastructure, in: SIGMOD, 2020.

M. Perron, R. Castro Fernandez, D. DeWitt, S. Mad-
den, Starling: A scalable query engine on cloud
functions, in: SIGMOD, 2020.

J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso,
A. Klimovic, A. Singla, W. Wu, C. Zhang, Towards
demystifying serverless machine learning training,
in: Proceedings of the 2021 International Confer-
ence on Management of Data, 2021, p. 857-871.

(22]

[24]

(36]

(37]

Y. Wu, T. T. A. Dinh, G. Hu, M. Zhang, Y. M. Chee,

B. C. Ooi, Serverless data science - are we there yet?
A case study of model serving, in: SIGMOD ’22:

International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, 2022.

A. Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht,
D. Skourtis, V. Tarasov, F. Yan, Y. Cheng, Infinicache:
Exploiting ephemeral serverless functions to build
a cost-effective memory cache, in: USENIX FAST,
2020.

J. Zhang, A. Wang, X. Ma, B. Carver, N. J. Newman,
A. Anwar, L. Rupprecht, V. Tarasov, D. Skourtis,
F. Yan, Y. Cheng, Infinistore: Elastic serverless
cloud storage 16 (2023).

M. Wawrzoniak, I. Miiller, R. Bruno, G. Alonso,
Boxer: Data analytics on network-enabled server-
less platforms, in: CIDR, 2021.

Apache Drill, 2022. URL: https://drill.apache.org/,
(accessed: 2022-10-20).

AWS Fargate — Serverless compute for containers,
2023-03-01. URL: https://aws.amazon.com/fargate/,
(accessed: 2023-03-01).

Amazon Elastic Container Service (Amazon ECS),
2023. URL: https://aws.amazon.com/ecs/, (accessed:
2023-03-01).

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Arm-
brust, A. Dave, X. Meng, J. Rosen, S. Venkataraman,
M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker,
L Stoica, Apache spark: A unified engine for big
data processing 59 (2016).

Amazon API Gateway, 2023. URL: https://aws.
amazon.com/api-gateway/, (accessed: 2023-03-01).
Trino, 2023. URL: https://trino.io/, (accessed: 2023-
06-20).

P. Hunt, M. Konar, F. P. Junqueira, B. Reed,
Zookeeper: Wait-free coordination for internet-
scale systems, USENIX ATC’10, 2010.

S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shiv-
akumar, M. Tolton, T. Vassilakis, Dremel: Interac-
tive analysis of web-scale datasets, 2010.

Amazon Elastic Kubernetes Service (EKS), 2023.
URL: https://aws.amazon.com/eks/, (accessed: 2023-
03-01).

W. Shin, W.-H. Kim, C. Min, Fireworks: A fast,
efficient, and safe serverless framework using vm-
level post-jit snapshot, Association for Computing
Machinery, New York, NY, USA, 2022.

D.Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu,
H. Chen, Catalyzer: Sub-millisecond startup for
serverless computing with initialization-less boot-
ing, in: ASPLOS, 2020.

J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger,
J. Appavoo, Seuss: Skip redundant paths to make
serverless fast, in: EuroSys, 2020.

https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/
https://learn.microsoft.com/en-us/azure/azure-functions/durable/
https://drill.apache.org/
https://aws.amazon.com/fargate/
https://aws.amazon.com/ecs/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://trino.io/
https://aws.amazon.com/eks/

(38]

(43]

Improving startup performance with Lambda Snap-
Start, 2023. URL: https://docs.aws.amazon.com/
lambda/latest/dg/snapstart.html, (accessed: 2023-
03-01).

H. Bian, T. Sha, A. Ailamaki, Using cloud functions
as accelerator for elastic data analytics 1 (2023).

H. Bian, A. Ailamaki, Pixels: An efficient column
store for cloud data lakes, in: 2022 IEEE 38th Inter-
national Conference on Data Engineering (ICDE),
2022, pp. 3078-3090.

Amazon Athena, 2020. URL: http://docs.aws.
amazon.com/athena/, (accessed: 2020-08-17).

S. Palkar, M. Zaharia, Diy hosting for online privacy,
in: Proceedings of the 16th ACM Workshop on Hot
Topics in Networks, HotNets-XVI, 2017.

M. Zaharia, A. Ghodsi, R. Xin, M. Armbrust, Lake-

(44]

house: A new generation of open platforms that
unify data warehousing and advanced analytics, in:
11th Conference on Innovative Data Systems Re-
search, CIDR 2021, Virtual Event, January 11-15,
2021, Online Proceedings, www.cidrdb.org, 2021.
F. Romero, G. I. Chaudhry, I. n. Goiri, P. Gopa, P. Ba-
tum, N. J. Yadwadkar, R. Fonseca, C. Kozyrakis,
R. Bianchini, Faa$t: A transparent auto-scaling
cache for serverless applications, Association for
Computing Machinery, New York, NY, USA, 2021.
Databend, 2023. URL: https://databend.rs/, (ac-
cessed: 2023-06-20).

Apache Flink, 2023. URL: https://flink.apache.org/,
(accessed: 2023-03-01).

ClickHouse, 2023. URL: https://clickhouse.com/, (ac-
cessed: 2023-06-20).

https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
http://docs.aws.amazon.com/athena/
http://docs.aws.amazon.com/athena/
https://databend.rs/
https://flink.apache.org/
https://clickhouse.com/

	1 Introduction
	2 MetaQ Prototype
	3 Feasibility study
	3.1 Methodology
	3.2 End-to-end query latency
	3.3 Engine startup time
	3.4 Selecting Query Engines

	4 Use Cases
	4.1 More Efficient Data Analytics
	4.2 Dynamically Extensible Engines
	4.3 User-owned Data Analytics Stack
	4.4 Data Lakes

	5 Research Opportunities
	5.1 The Meta-Engine
	5.2 Autoscaling Per-query Deployments
	5.3 Query Scheduling and Caching
	5.4 System Infrastructure
	5.5 Generalizing to Other Engines

	6 Conclusion

