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ABSTRACT
Serverless is an attractive platform for a variety of applica-
tions in the cloud due to its promise of elasticity, low cost,
and fast deployment. Instead of using traditional virtual
machine services and a fixed infrastructure, which incurs
considerable costs to operate and run, Function-as-a-Service
allows triggering short computations on demand with the
cost proportional to the time the functions are running.
As appealing as the idea is, recent work has shown that
for data processing applications (regardless of whether it
is OLTP, OLAP, or ML) existing serverless platforms are
inadequate and additional services are needed in practice,
often to address the lack of communication capabilities be-
tween functions. In this paper, we demonstrate how to en-
able function-to-function communication using conventional
TCP/IP and show how the ability to communicate can be
used to implement data processing on serverless platforms
in a more efficient manner than it was possible until now.
Our benchmarks show a speedup as high as 11× in TPC-H
queries over systems that use cloud storage to communicate
across functions, sustained function-to-function throughput
of 621 Mbit/s, and a round-trip latency of less than 1 ms.

1. INTRODUCTION
Serverless (i.e., Function-as-a-Service, FaaS) platforms in

the cloud [7, 16, 23] or for data centers [6] are becoming
widely available as an alternative to running a fixed infras-
tructure based on either virtual machines (VMs) or X-as-a-
Service (e.g., Query-as-a-Service systems, QaaS, like Ama-
zon’s Athena [3] or Google’s BigQuery [15]). The appeal
of serverless resides in its ease of use, extreme elasticity,
and fine-grained usage-based pricing, thus promising overall
lower costs [1, 2, 8, 9, 10, 11, 26]. These properties come
to the fore especially for occasional or heavily fluctuating
workloads, where the idle time of over-provisioned VMs can
dominate the time spent on useful work.
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Even though serverless functions were not originally de-
signed for this use case, a large number of potential uses
have been proposed for job-oriented applications. In such a
setup, serverless functions are treated as workers in a (vir-
tually) infinite cluster of machines that can work at a mas-
sive scale (typically using several thousand cores). They
can thus complete even larger jobs in an interactive time
frame, while incurring cost only for the job execution itself.
This promises to significantly outperform VM-based solu-
tions, which would be either heavily under-utilized between
jobs or too slow to start on a per-job basis [25]. Exam-
ples include MapReduce-like applications [19], video encod-
ing and processing [14], distributed compilation [13], and
data analytics [25, 27]. Similarly, stateful latency-sensitive
applications such as web or model serving have also been
explored [30], where the elasticity of serverless promises to
reduce the need for over-provisioning by large factors.

However, current offerings of serverless functions come
with limitations that make it impossible to exploit the full
potential of serverless computing, in particular, for the ap-
plications mentioned above [17, 24]: (1) functions are short-
lived and cannot be readily used for long-running compu-
tation such as complex analytical queries [13]; (2) functions
cannot directly communicate with each other, making the
exchange of intermediate data cumbersome [21, 25, 27]; (3)
starting many functions induces a considerable delay as ex-
isting platforms either limit the speed at which new func-
tions can be spawned [23] or have a limit on how many
functions can be active at any point in time [22]; and (4)
there are limited caching possibilities within functions, forc-
ing data to be read over and over again from storage when
processing complex queries unless an external caching ser-
vice is provided [33].

Consequently, a large amount of effort has been spent to
develop application-specific work-arounds for these limita-
tions. In particular, several alternatives for direct network
communication have been proposed, including (1) commu-
nication through cloud storage [25, 27], (2) purpose-built
storage layers for ephemeral data [21], (3) dedicated virtual
machines for exchanging intermediate results [19], and (4)
rerouting messages through a central VM-based proxy [13,
14, 31]. While this makes direct network communication
possible, these work-arounds incur a high latency and mon-
etary cost, re-introduce fixed infra-structure, or do not scale
to communication-intensive applications.

In this paper, we present Boxer, a system enabling direct
function-to-function communication in existing public cloud
infrastructure. To enable serverless applications to commu-
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nicate through a conventional TCP/IP network stack, Boxer
uses TCP hole-punching techniques related to Peer-to-Peer
systems [12, 18] to circumvent the network constraints of
current serverless offerings.

We show the potential of Boxer by extending our own work
on data processing based on serverless functions, Lambada
[25], with support for TCP/IP-based communication. The
new implementation is not only simpler and less specific to
a particular environment, it also significantly outperforms
the original version based on data exchanges through cloud
storage: Most TPC-H queries are both faster and cheaper
by a factor 4× and 6×, with some queries enjoying an im-
provement as high as 11× and 15× in running time and
cost reduction, respectively.

These observations are encouraging and show the poten-
tial of network-enabled serverless platforms. Through Boxer,
it becomes possible to explore many new architectural ap-
proaches to elasticity and large scale data processing. For
instance, a database engine running on a fixed-size cloud de-
ployment (a VM of a given size) could react to sudden load
spikes quickly by moving part of the load to serverless func-
tions. Such an approach exploits the conventional engine
for the regular load and takes advantage of the elasticity of
serverless to spawn occasional jobs that increase the overall
capacity without requiring to provision the system for the
peak load. We expect Boxer to enable many such designs,
leading to hybrid approaches combining conventional cloud
deployments and networked serverless functions.

2. BACKGROUND AND RELATED WORK
In what follows we focus on the use of serverless for data

processing as discussed in, e.g., [17, 25, 27, 32], and do not
consider other use cases that might impose different require-
ments and/or constraints.

2.1 Overview of Serverless Platforms
Serverless platforms allow developers to decompose appli-

cations in small logic units (functions) triggered when spe-
cific events occur, e.g., files are uploaded to storage, REST
API calls, etc. Developers upload the function code/binary
and configure how it should be activated. Then the server-
less platform is responsible for instantiating the function ex-
ecution runtimes, deploying them, and determining the scal-
ability factor for each function, i.e., how many function exe-
cution environments to host for each function. Besides sim-
plifying application development and deployment, serverless
offers a lower startup time than virtual machine based de-
ployments [1, 2, 8, 9, 10, 11, 26], thereby achieving high
degrees of parallelism in a fraction of the startup time. This
is useful for occasional, interactive use [25, 27].

2.2 Data Shuffling
Since functions cannot communicate directly with each

other, applications that involve heavy data processing have
to resort to a variety of mechanisms to shuffle data among
functions: Amazon S3 [4], messaging queues such as Ama-
zon SQS [5], using hand-tuned VM-based resources to ex-
change data [21, 28, 33], or implementing data exchange
operators that rely on cloud storage to pass the data [25,
27]. Such solutions incur at least one of these two prob-
lems: i) cloud-based storage latency is at least two orders of
magnitude higher than the sub-millisecond latency of point-
to-point communication in data center networks (further ag-

gravated by the fact that data shuffling requires at least two
requests, one to read and one to write); ii) VM-based solu-
tions force developers to manually manage cloud resources,
partially defeating the purpose of using serverless.

Previous efforts have tried to ameliorate the data shuf-
fling problem by tailoring storage services so that they can
be used to exchange data. For example, Klimovic et al. [21]
have designed an elastic, fast, and fully managed storage
system for ephemeral data. Similarly, Pu et al. [28] have
built a system for intermediate data that uses a combina-
tion of AWS ElasticCache and AWS S3. Built with a focus
on transactional workloads, Anna [33] is an elastic caching
system built on top of a pre-existing key-value store [32] that
can be used to implement stateful functions [30] and trans-
actional causal consistency for serverless functions [34]. In
all these cases, the effort is complicated by the difficulty in
determining what is the optimal storage strategy for data
analytics [20] and the wide range of incompatible options
among the offerings available [33].

For data analytics, the alternative to implementing such
extra services is to exchange data through cloud storage us-
ing an exchange operator writing to and reading from per-
manent storage services. In Starling [27], intermediate data
is exchanged between functions using Amazon’s S3 [4]. The
high latency of the service is hidden by using parallel read
requests per function and, for actual data shuffling requiring
all-to-all communication, the ability to read only a fraction
of a file that S3 provides is used so that the amount of data
to be moved is minimized. Lambada [25] also uses S3 but
uses a more sophisticated exchange operator (see below).
These two systems have the advantage of not requiring any
external service but, despite their efforts to minimize the
overhead, their performance is still limited by that of S3:
both systems show that data analytics over serverless today
is only cost-efficient at a low query throughput.

2.3 Networking in Serverless
The possibility of allowing direct communication between

functions has been previously suggested [13] but without
any concrete implementation nor details of how this could
be achieved. Attempts at implementing such a service have
been made [29] but using specialized APIs and network pro-
tocols. Existing examples of the proposed approach cover
mostly communication between two functions rather than
generalized networking capabilities.

Lacking the ability to establish direct communications,
current systems exploit the ability of functions in Amazon
Lambda to establish outgoing TCP connections. For in-
stance, InfiniCache [31] provides functions with the address
of a proxy at start time. The function then uses that address
to establish a TCP connection to the proxy. When clients
want to contact the function, they contact the proxy, which
then relays the message to the function and eventually for-
wards the answer. A similar design, involving an external co-
ordinator, is used in [13, 14] for the same purpose. Enabling
communication through an intermediary service can become
a scalability bottleneck, increases the round trip time for all
requests, requires additional infrastructure, and does not al-
low direct communication between functions as needed for
parallel query processing. For data processing, where the
amount of data being exchanged can be large, such a multi-
staged exchange operator is an inefficient approach due to
the amount of data copying involved.



3. LAMBDA-TO-LAMBDA COMMUNICA-
TION

In this section we describe Boxer, a system enabling net-
work communication across serverless functions. Boxer lever-
ages TCP/IP, a reliable data stream protocol, and standard
sockets, to allow functions to communicate directly with
each other without an intermediary service. The current
implementation runs on AWS Lambda, which we have cho-
sen for the first prototype as it supports more programming
languages and has higher service limits than the other com-
mercial offerings from Microsoft and Google [27].

3.1 Network Address Translation (NAT)
In AWS Lambda, functions execute behind a NAT. NAT

(Network Address Translation) is a common networking tech-
nique used in data center networks composed of many iso-
lated IP address spaces. NAT devices map addresses from
one address space to another to provide transparent rout-
ing between hosts in different address spaces. In general,
hosts behind a NAT can initiate connections to routable
hosts outside of their NAT, however, they cannot accept
new incoming requests. Lambdas are thus allowed to initi-
ate new connections to outside services, but cannot accept
incoming requests. Functions have their local private ad-
dress spaces, and NATs provide a transparent mapping to
externally routable addresses used for communicating with
external services.

To enable direct communication between functions, func-
tions must receive network requests initiated by other func-
tions. New network requests to functions have to traverse
their NAT, or otherwise, they will be discarded. We found
two methods to traverse AWS Lambda NATs, enabling lambda-
to-lambda TCP communication. They can be seen as vari-
ants of classic techniques developed more than a decade ago
by the P2P research communities. The first one is a special
case of parallel TCP hole punching [12], and the second one
is similar to sequential TCP hole punching [18]. We cur-
rently use both, for different purposes as described below.

3.2 Boxer Hole-Punching Service
Boxer is composed of three sub-systems: (1) the Boxer

hole-punching service, (2) the Coordinator service, and (3)
the Transparent Compatibility module. All three are de-
ployed together with the function code and execute along-
side each Lambda instance.

The Boxer hole-punching service runs in every function
instance. It provides a function-local API to request NAT
holes to be punched in NAT(s) of other function instances.
This API is used by the transparent compatibility module
(described below) to provide function to function TCP con-
nection setup capabilities to unmodified applications.

The hole-punching service instances maintain control con-
nections with each other. These connections are set up dur-
ing initialization using a version of the parallel TCP hole
punching protocol [12]. The control connections are used
by hole-punching service instances to forward remote hole
punching requests to the appropriate remote instances.

When a hole-punching service instance receives a request
from a remote peer, this request corresponds to a remote
function attempting to make a new TCP connection to the
local function. In the basic configuration, the receiving hole-
punching service uses a form of sequential TCP hole punch-

ing [18] to punch a hole in the NAT and then send an ac-
knowledgment to the requesting hole-punching service. The
TCP connection instantiation is then allowed to proceed as
it will now be possible to traverse the NAT. Via this local
hole punching interface, functions can punch holes in re-
mote NATs with the agreement of the remote function and
instantiate TCP connections to a remote listening function.

3.3 Coordinator Service
The Coordinator Service is responsible for tasks related

to control and orchestration. At Lambda function instan-
tiation time, the local Coordinator in the function contacts
its seed Coordinator to join the system. The seed Coordi-
nator is the same as the local Coordinator running in the
functions, except the seed Coordinator is not instantiated
behind a NAT, e.g., in a VM,—it can accept initial network
connections from lambdas without the need to perform hole
punching. The seed replies with the observed external ad-
dress and begins to stream function membership updates.
At this point, the local Coordinator can start the local hole-
punching service described above. Currently, we rely on one
seed Coordinator for propagating membership updates, but
other designs are conceivable. The way the seed Coordinator
operates is similar to the way proxies are used in InfiniCache
[31] except that it forwards addresses of other functions so
that the function can establish direct connections to them
without having to rely on the proxy for all communications
as it happens in InfiniCache.

The seed Coordinator may also reject the join request.
Currently, there are two reasons why a join request can be
rejected: (1) if the joining lambda’s external address is al-
ready registered, (2) if there is already a sufficient number of
lambdas participating. Both of these decisions can be seen
as very simple resource allocation decisions.

Every Coordinator provides a local membership service
allowing the application to learn of other participating func-
tions incrementally, just by receiving updates from a local
network connection. This feature matches the elasticity ex-
pected of serverless systems.

The local Coordinator is also responsible for starting the
application inside a Lambda function, and loading the com-
patibility module described below. Depending on the appli-
cation, the required environment and start conditions may
differ. For example, currently, Lambada requires the list of
participating addresses to be provided at start time so that
it can exchange intermediate data for query processing. In
this case, the Coordinator delays the execution of the func-
tion until all necessary participants have joined and unique
worker IDs have been assigned. It then starts the execu-
tion of the function application. This can be seen as a very
simple distributed coordination service.

3.4 Transparent Compatibility Module
The AWS Lambda runtime environment is based on Linux.

Typical Lambda functions (or the libraries they leverage)
target that interface, including the socket interface for net-
work functionality exposed by libc system library. To sup-
port the execution of such unmodified binaries that can per-
form function to function networking using Boxer, we deploy
a small shim interposition library and instruct the dynamic
linker to link all applications with it when they are started
(using the LD_PRELOAD environment variable). The shim in-
tercepts appropriate libc socket function calls. When the



Median Mean Std Dev Min Max

Latency 531 µs 629 µs 318 µs 208 µs 1442 µs
Throughput 627 Mbit/s 621 Mbit/s 23.4 Mbit/s 552 Mbit/s 684 Mbit/s

Table 1: Function to function round-trip TCP latency (1 KiB message size) and throughput using Boxer.

Lambda S3 Lambda Boxer-TCP EC2 t2.large EC2 t3.large EC2 m4.large

Avg. latency 108 ms [17] 629 µs 335 µs 205 µs 186 µs
Slowdown 581× 3.4× 1.8× 1.1× 1×

Table 2: Network latency comparison across different cloud deployments and using S3 to exchange data.

function application wants to establish a TCP connection
with another function, instead of directly calling the libc

system library implementation that then issues system calls
to the Linux kernel to perform the connection setup, the in-
terposition module intercepts the request. It first uses the
Boxer hole-punching service on behalf of the application to
punch the necessary NAT holes and only then forwards the
original request to the system libraries that then issue sys-
tem calls to the Linux kernel. The application is unaware of
this interception and proceeds to use the conventional socket
interface.

3.5 Network Measurements
To explore the function to function TCP networking en-

abled by Boxer, we measured TCP throughput and latency
between pairs of AWS Lambdas. The experiments were con-
ducted in the AWS us-west-2 region with the Lambda func-
tion environment with 3008MB of memory.

We measured TCP throughput between pairs of Lamb-
das by running an unmodified iperf31 network measurement
tool. We chose to use iperf3 because it is a popular and
well-maintained tool aiming to measure throughput achiev-
able by regular user-space applications. We invoked 48 con-
current Lambda instances, each running unmodified iperf3
using Boxer. Each Lambda instance was paired with one
other Lambda instance; one running iperf3 in server mode
and the other in client mode. Once an iperf3 pair established
a TCP connection the server receive throughput benchmark
was run for the 15 minutes. We recorded the measured uni-
directional throughput at one-second granularity over the
15-minute period (the maximum lifetime of a Lambda func-
tion) of the 24 Lambda instance pairs. We observe an aver-
age sustained throughput of 621 Mbit/s without noticeable
degradation over the entire 15-minute time period. Table 1
presents statistics of 1-second throughput measurements for
all functions, discarding measurements from the first 15 sec-
onds of the experiment. During the 15 minute experiment,
for all active TCP connections, the minimum throughput
achieved over any 1-second window was 552 Mbit/s showing
the throughput was sustained over the lifetime of the con-
nections. Throughput achieved during the initial period of
the experiments was significantly higher, which is why the
reported steady state statistics do not include first 15 sec-
onds of the experiment. The average throughput during the
initial 3 seconds of the experiment was 1008 Mbit/s, median
was 644 Mbit/s and maximum throughput recorded over 1-
second window was 1802 Mbit/s. After this initial burst of
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available throughput, the steady state reported in Table 1
is reached.

We also measure the TCP latency between pairs of Lamb-
das using a ping-pong message exchange program running
in each Lambda instance. After instantiating 64 Lambda in-
stances and pairing each instance to one other instance, the
test program starts in server mode on one Lambda of the
pair and in client echo mode in the other Lambda. After the
echo client establishes a TCP connection to the server, the
server starts a round of 1000 ping-pong exchanges with mes-
sage size of 1 KiB. The server measures the total time of the
round, repeats for 100 rounds and reports the final results,
presented in Table 1. The average TCP round trip latency
between two Lambdas is 629 µs and median latency of 531 µs.
It should be noted that the level of dispersion in the latency
measurement is not insignificant, and is contributed to by
two main factors. First, latency outliers during the lifetime
of one TCP connection, and second, the average latency be-
tween Lambda pairs varies between pairs, perhaps reflecting
different placement of Lambda instances in the datacenter
network.

Table 2 shows average TCP latencies measured using the
same measurement tool described above, except not run be-
tween pairs of Lambda instances but between pairs of three
EC2 virtual machine instance types. As above, the amount
of data exchanged in all cases is 1 KiB. The comparison
of the results shows that Lambda to Lambda TCP latency
using Boxer has a function to function networking latency
that is comparable to that of VM-to-VM networking, and
significantly (172×) lower than that reachable when imple-
menting communication through S3 as it is done in existing
data processing systems over serverless [17, 25, 27]. For the
numbers reporting the overhead of communication through
S3, we use the figures provided in [17].

4. EVALUATION

4.1 Overview of Lambada
To evaluate Boxer in an end-to-end scenario, we use and

extend Lambada [25], a data analytics system built for server-
less functions that relies on S3 to exchange data between
functions using an exchange operator that is among the most
efficient published so far.

In Lambada, only a small component of the system re-
ferred to as driver resides on the laptop or workstation of
the user. It consists of the user interface, query optimizer,
and compiler, as well as part of the query execution layer.
All other components are serverless components that are
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Figure 1: Running time of Lambada on TPC-H using TCP+Boxer or S3 for communication.

fully managed by the cloud provider. In particular, Lam-
bada uses serverless functions as workers of the execution
layer, which communicate among themselves and with the
driver through shared serverless storage, i.e., a combination
of message queues (SQS), cloud storage (S3 ), and key-value
stores (DynamoDB).

The driver translates queries into executable plans and
starts executing them. After some potential pre-processing,
it launches a potentially large number of serverless functions
in order to execute data-parallel plan fragments representing
the bulk of the work. Queries typically read one or more
input tables from cloud storage and either store the result
again on cloud storage or return their intermediate results
to the driver, which may post-process them before returning
them to the user. For more details about Lambada, we refer
to the original paper [25].

4.2 Baseline
In the original version, which we take as the baseline,

Lambada uses serverless cloud services for indirect commu-
nication among the workers. In particular, it implements
operators that need to shuffle data among the workers such
as joins, grouping, reduction, and sorting, using a purpose-
built exchange operator that communicates through files on
cloud storage. The main idea is to write all data that needs
to be sent from a particular worker to another one into a file
whose name is based on the two worker IDs, such that the
receiver can poll on that file until it exists and read its con-
tent. While this approach makes it possible for workers to
communicate without a direct network connection, its basic
version does not scale to a large number of workers: Since
it involves a quadratic number of files (one for each pair
of workers), it runs into service limits of the cloud storage
system and incurs a quadratic request cost. To overcome
this issue, Lambada does the exchange in two rounds, each
within a sub-group of

√
P of the P workers, which requires

only O(P ·
√
P ) accesses to cloud storage, and combines all

data sent by each worker into a single file, reducing the num-
ber of write accesses to just P .

4.3 Lambada + Boxer
To measure the impact of Boxer on query processing, we

extend Lambada with a traditional TCP-based exchange op-
erator that uses the interfaces provided by Boxer. This op-
erator reads its upstream data, partitions it into buffers (one
for each other worker), and sends each buffer to its target
worker as soon as it is full using a regular TCP connection.
In order to hide network latencies, we use asynchronous

socket operations such that the latencies of many simultane-
ous messages overlap among themselves as well as with local
processing. In order to reduce the number of connections,
we reuse one connection among all operators in a query for
every 〈sender , receiver〉 pair. Neither the design nor the im-
plementation of this operator is specific or even aware of the
serverless setup. In each worker, Boxer loads the intercep-
tion library to Lambada’s query processing engine with the
mechanism described above, which transparently activates
hole-punching for the connection setup and uses standard
network sockets afterward.

We evaluate the two versions of Lambada on TPC-H at
Scale Factor 10. As in the original paper [25], we gener-
ate the data in a dictionary-encoded form and formulate
the queries against the dictionary codes in order to avoid
implementing string support. We store the data in Snappy-
compressed Parquet files on S3, totaling about 3.2 GB. For
the workers, we use serverless functions of 2 GiB main mem-
ory, which gives them the timeslices of slightly more than
one CPU. Lambada now supports more queries than in the
original paper but still misses features to run the full bench-
mark.2 We use 64 workers and a single-level exchange for
both variants, which simplifies the setup and interpretation
of the experiments. In order to isolate the effect of the
communication mechanism, we add an artificial barrier at
the beginning of each inner plan fragment (implemented us-
ing Boxer in both versions) and measure the time from the
moment the first worker passed that barrier until the last
worker completed its plan fragment. Except for using two
different versions of the exchange operator, the plan frag-
ments run by both versions are exactly the same. All num-
bers represent averages of five runs.

4.4 Query Execution Time
Figure 1 shows the running time of the two variants. As

the plot shows, Lambada is consistently and significantly
faster using direct communication via Boxer than using indi-
rect communication via cloud storage. The numbers above
the bars indicate the speed-up of the former over the lat-
ter. The performance difference is mostly in the order of
4× and 6× and has a strong correlation with the number
of exchange operators in the data-parallel plan fragments:
Queries 1 and 6 do not exchange any data and thus have the
same running time with both variants as expected; Queries

2The missing features are unrelated to the network layer and
are limitations of Lambada: Queries 9, 13, 16, and 20 need
string or null support and Queries 7 and 20 need a broadcast
operator or support for multiple stages.
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Figure 2: Monetary costs of Lambada on TPC-H using TCP+Boxer or S3 for communication.

4, 12, 14, 15, 19, and 22 have a single join, i.e., two exchange
operators, or a join and an aggregation, each, so the speed-
up of the two variants is mostly in the range of 4× and 6×;
Queries 3, 10, 11, 17, and 18 use four to seven instances of
the exchange operator, so the TCP-based version tends to
have a bigger advantage; and Queries 2, 5, 8, and 21 use
ten or more exchange operators and are consequently the
queries where the performance gap is the largest.

The performance difference comes from two main effects:
First, while indirect communication requires the sender to
complete all writing (per exchange operator) to cloud stor-
age before the sender can start reading any data, the direct
communication can be done in a streaming fashion using
reasonably small chunks. Note that this is intrinsic to any
storage system with a request limit or request cost (and thus
to any real-world system with a usage-based pricing model
we know of). This effect explains at most a performance
difference of factor two assuming that sending and receiving
can be perfectly overlapped. The second effect is due to the
higher latency of accessing cloud storage compared to func-
tion to function communication via Boxer, which explains
why the benefit of direct communication is larger for more
complex queries. Note that this is also unlikely to change
radically since cloud services typically have several layers of
authorization, accounting, load balancing, etc. all of which
increase the latency of accessing storage compared to send-
ing the same amount of data through the network.

4.5 Monetary Query Cost
We also analyzed the costs of the CPU time used by the

workers running in serverless functions as well as the request
costs to cloud storage, which are mainly done by the ex-
change operator. The only other costs of running the query
itself are (1) request cost to the serverless functions and (2)
storage cost of temporary results on cloud storage, both of
which are so small that they would not be visible on the
plot. Except for the coordinator, there is no cost of setting
up infrastructure or keeping it running between queries.

Figure 2 shows the costs of running the same queries as
above. The numbers above the bars indicate the cost re-
duction of using communication through Boxer compared
to using cloud storage. The numbers are strongly correlated
to the running time: using Boxer reduces the costs by a fac-
tor between 4× and 6× for most queries and significantly
more for the more complex ones. This is not surprising since
the costs are dominated by the CPU time of the serverless
functions. However, the request costs of accessing S3 have
a significant share as well (GETs and PUTs to S3 are not

for free and the total cost accumulates due to the many ac-
cesses needed to implement an exchange operator for parallel
query processing); often in the order of a quarter and up to
a third (for Query 21). Interestingly enough, the request
costs alone are higher than the total costs using Boxer for
almost all queries. Since the number of requests increases
quadratically3 with the number of workers, the cost-benefit
of using Boxer will be even more apparent at larger scales.

5. FUTURE DIRECTIONS
Boxer enables building useful applications today at much

better performance and higher efficiency than previous server-
less approaches. As an enabler for research on future server-
less systems, the following are interesting directions that
Boxer opens up:

Deployment mechanism. How should individual com-
ponents of a data-intensive application be deployed? Apart
from VMs with relatively high (but steadily decreasing) start-
up times, cloud providers also offer container-based deploy-
ments for arbitrary applications (e.g., AWS Fargate) and
serverless functions (either deployed via special function pack-
ages or as containers as well). While the latter have by far
the lowest start-up time, they currently come with the lim-
itations discussed throughout the paper. Thanks to Boxer,
all existing deployment mechanisms can be compared with-
out having to purpose-built indirect communication primi-
tives, which will help in deciding which one is more appro-
priate for a given application.

Systems for wide, short-lived jobs. As the abun-
dant work on serverless computing has shown, the increas-
ing elasticity of the cloud makes it possible for everyone to
use thousands of cores for jobs that take just a few seconds
to complete. These extremely wide but short-lived jobs cre-
ate challenges for many system components, even if direct
networking among the workers is possible. In particular,
failures or at least delays become increasingly likely with
the “width” of a job but must be dealt with at extremely
short time scales. This is true for the start-up of large num-
bers of workers, the connection setup among these workers
(which requires quadratic overall work for a fully connected
network), the efficient handling of large numbers of connec-
tions at each worker, and many more. Solutions could in-
clude sparser connection topologies, such as the grid-based
topology we used in Lambada’s two-level exchange operator,

3As we have shown in prior work [25] and discussed above,
sub-quadratic algorithms exist but at the expense of more
phases which increase running time and, thus, costs as well.



or hedged computations and/or communication, i.e., redun-
dant executions of latency-critical phases where only the first
to complete contributes to the final result. Such optimiza-
tions can be easily combined with precise query plans to
come up with better, less demanding approaches to deploy
many functions to compute a query as the communication
pattern within a query can be determined in advance and
does not always need to involve a fully connected network
topology (probably trees are a better, more natural option
for query processing).

Elasticity for long-lived applications. While most
work on serverless concentrates on one-off jobs [24], we en-
vision the extreme elasticity of serverless to be useful also
for long-running applications with fluctuating resource re-
quirements. One example is a stream processing engine ex-
periencing a load spike. This type of engine is usually able
to adapt to changes in the input stream volume but typ-
ically at the time scale of minutes. With serverless func-
tions, a large number of additional resources are ready to
be used less than a second after detecting the spike, so sys-
tems could react more promptly. This could be done only
using serverless functions or in a hybrid VM/serverless setup
where serverless resources are used for short spikes or as a
way to bridge the time until more cost-efficient resources are
started. Both variants would allow applications to reduce
over-provisioning, the traditional way to deal with sudden
spikes.

Limitations of Boxer. Currently, Boxer is at the pro-
totype stages and much remains to be done to increase its
functionality, stability, and make it more efficient. There are
also quite a few interactions with the underlying serverless
platform that need further investigation. For instance, the
time it takes to establish all connections among a group of
functions varies greatly for reasons that are not yet clear.
As another example, the bandwidth available is surprisingly
stable for point-to-point connections but more experiments
are needed to explore how the available bandwidth scales
with the number of connections.

6. CONCLUSION
In this paper we have presented Boxer, a system enabling

network communication for serverless functions. We have
tested Boxer by implementing queries form TPC-H in a ver-
sion of Lambada [25] and compared the performance when
using the original S3-based exchange operator and when us-
ing network communication. We observe significant perfor-
mance gains in most queries, especially in the most time-
consuming ones by simply using Boxer without any fur-
ther optimizations or careful query planning. Boxer is open
source and can be developed further along several interesting
directions to better support serverless data analytics.
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