
Boxer: FaaSt Ephemeral Elasticity for
Off-the-Shelf Cloud Applications

Michael Wawrzoniak1, Rodrigo Bruno2, Ana Klimovic1, Gustavo Alonso1
1Systems Group, Dept. of Computer Science, ETH Zurich

2INESC-ID/Técnico, U. Lisboa

Abstract
Elasticity is a key property of cloud computing. However,
elasticity is offered today at the granularity of virtual ma-
chines, which take tens of seconds to start. This is insufficient
to react to load spikes and sudden failures in latency sensitive
applications, leading users to resort to expensive overprovi-
sioning. Functions as a Service (FaaS) provides significantly
higher elasticity than VMs, but comes coupled with an event-
triggered programming model and a constrained execution
environment that makes them unsuitable for off-the-shelf
applications. Previous work tries to overcome these obsta-
cles but often requires re-architecting the applications. In
this paper, we show how off-the-shelf applications can trans-
parently benefit from ephemeral elasticity with FaaS. We
built Boxer, an interposition layer spanning VMs and AWS
Lambda, that intercepts application execution and emulates
the network-of-hosts environment that applications expect
when deployed in a conventional VM/container environ-
ment. The ephemeral elasticity of Boxer enables significant
performance and cost savings for off-the-shelf applications
with, e.g., recovery times over 5x faster than EC2 instances
and absorbing load spikes comparable to overprovisioned
EC2 instances.

1 Introduction
Elastic resource allocation is a key feature of cloud comput-
ing [13]. Cloud users rent virtual machines (VMs) on-demand
to meet the resource requirements of their applications. How-
ever, the elasticity granularity offered by today’s virtual ma-
chines is insufficient to react to sudden load spikes or VM
failures that latency-sensitive cloud applications commonly
experience. For example, Figure 1 shows that the request rate
for a Reddit web service application varies up to two orders
of magnitude within five seconds. Meanwhile, instantiating
just a VM or allocating new resources for a ’fast starting’
container in the cloud takes tens of seconds (Figure 2).

Since conventional cloud infrastructure is slow to respond
when load spikes or failures occur, users often resort to over-
provisioning resources to provide the illusion of higher elas-
ticity [18, 19, 46, 49]. This is expensive for users as they
rent and pay for more and/or larger VMs than they really
need. Widespread overprovisioning is also costly for cloud
providers, who despite techniques like over-committing and
harvesting slack resources [12, 14, 46], still need to power

0 2000 4000 6000 8000 10000
Time [minutes]

0

10000

20000

30000

40000

Re
q/

m
in

ut
e

3540 3550 3560 3570 3580 3590 3600
Time [seconds]

101

102

103

104

Re
q/

se
co

nd

Figure 1. Reddit requests over 7 days (top) and 1 minute
(bottom). Extracted from a public Reddit 2015 trace.

significantly more machines than necessary to support the
aggregate load [30]. For example, the 2019 Borg traces show
that CPU and memory utilization is only ∼60%, even when
the provider overcommits resources [46].
Function as a Service (FaaS) platforms, such as Azure

Functions [7] and AWS Lambda [4] offer highly elastic com-
pute pools that automatically scale based on the number of
tasks that users invoke. The “serverless” execution model
of these platforms simplifies resource allocation, scales re-
sources on demand, and offers fine-grained billing favorable
for short tasks. Under the hood, FaaS platforms execute tasks
in lightweight VMs designed to boot quickly (e.g., 100s of
milliseconds [11]). However, although it offers high elastic-
ity, current FaaS cloud platforms couple the fast-booting
VMs with an event-triggered programming model and a con-
strained execution environment that makes them unfit to
run general-purpose cloud applications off-the-shelf [24].
Existing FaaS platforms, force applications to be written as
collections of short-lived, stateless functions, which cannot
accept network connections while executing [16, 24, 41, 55].
Previous work tries to overcome these obstacles by im-

plementing point solutions for various use cases, such as
data analytics [32, 34], stream processing [43], video process-
ing [21], and machine learning training [26]. Other solutions

1

1 4 16 64 256 1024
Container image size [MB]

0

20

40

60

80

100

120

TT
FB

 re
ce

iv
ed

 fr
om

 c
on

ta
in

er
 [s

ec
]

0.25vCPU / 0.5GB
0.25vCPU / 2GB
1.0vCPU / 2GB
1.0vCPU / 8GB
4.0vCPU / 8GB
4.0vCPU / 30GB
min. billable time

(a) AWS Fargate/ECS container service

2 4 8 16 32
Virtual machine image size [GB]

0

20

40

60

80

100

120

TT
FB

 re
ce

iv
ed

 fr
om

 v
irt

ua
l m

ac
hi

ne
 [s

ec
] t3.micro

t3.nano
m5.large
m5n.large
m5n.24xlarge
c6i.large
c6i.32xlarge
min. billable time

(b) AWS EC2 virtual machines

Figure 2. Median instantiation times of containers and VMs services, error bars are min and max values. Details in Section 2.1

address some of the limitations of FaaS (e.g., function-to-
function communication) but still require re-architecting
large software stacks to adapt to the FaaS programming
model [17, 20, 28, 29, 48, 52].

In this work, we show how off-the-shelf cloud applications
can transparently benefit from ephemeral elasticity with FaaS.
We focus on ephemeral usage of FaaS to absorb load spikes
and accommodate sudden failure recovery, rather than run-
ning an entire application from start to end since traditional
long-running VMs still provide a cost advantage compared
to FaaS [9, 32, 34] and are suitable to serve steady application
load. Our aim is to seamlessly run applications across tradi-
tional long-running VMs and FaaS instances without requir-
ing changes to applications. The key challenge is providing
a familiar distributed programming model (i.e., POSIX-style
network-of-hosts) — which generic cloud applications ex-
pect — on top of existing FaaS platforms. We achieve this
by designing an interposition layer (now available to users,
eventually supported by the cloud provider) deployed on top
of existing FaaS platforms to emulate the necessary network,
file system, and name resolution functionality. We have im-
plemented such interposition layer, Boxer, on top of AWS
Lambda. Boxer does not require changes to the application
and integrates with traditional infrastructure orchestration
tools such as Docker Compose. Boxer intercepts system C
Library function calls and emulates the necessary network-
of-hosts environment (network, file system, name resolution)
that applications expect when deployed in a VM/container
environment. We show that Boxer can be used to quickly
absorb load bursts in an unmodified microservice application
(DeathStar benchmark).Similarly, we show how an unmod-
ified Zookeeper quorum running on EC2 can be quickly
restored by replacing a failed node with a Lambda instance
in about 6 seconds while doing the same with VMs takes
close to one minute. These results demonstrate the potential
of Boxer to provide ephemeral elasticity in a transparent
manner.

2 The elasticity dream: are we there yet?
To characterize the elasticity requirements of cloud applica-
tions and understand the limitations of VM and container-
based cloud infrastructure, we analyze a public Reddit trace [6]
that includes user requests per second as an example of a
web-based microservice application. From the dataset we
extract two subsets: a 7-day trace containing the number
of requests per minute, and a 1-hour trace containing the
number of requests per second (Figure 1), from which we
draw two key observations:

Observation #1: the 7-day trace (bottom plot in Figure 1)
displays an evident daily pattern for which the infrastructure
can be scaled over the course of minutes and hours. For such
course-grained load variations, high infrastructure elasticity
is not required;
Observation #2: when looking at the 1-minute trace,

we find significant workload burstiness. Unlike the 7-day
trace, the 1-minute trace requires highly elastic or highly
overprovisioned infrastructure to be able to serve workload
changes of more than an order of magnitude in a few seconds.

We conclude that real workloads benefit from two different
elasticity granularities: coarse-grain elasticity to scale the
entire infrastructure over the period of minutes and hours,
and fine-grain elasticity to serve unpredictable user request
bursts at the second scale. Next, we demonstrate that no
existing cloud infrastructure can cost-efficiently satisfy both
types of elasticity. To bridge this gap, we propose the idea
of ephemeral elasticity, a solution for affordable and highly
elastic cloud infrastructure.

2.1 Virtual Machine and Container Elasticity
Conventional virtual machine or container service deploy-
ments offered by cloud providers have significant, often
deeply intertwined, inefficiencies. In Figure 2 we explore
the issue through experiments that measure the time to first
byte (TTFB) received for different image sizes, container re-
sources sizes (vCPU, memory) and virtual machine types.

2

We measure the time from issuing a local (in the same avail-
ability zone and VPS) instantiation request to receiving back
the first one-byte UDP packet sent from the instantiated
purpose-built minimal container/virtual machine image. The
experiment is repeated 10 and 32 times for each of the ECS
and EC2 configurations, respectively. As the data shows,
real-world VM and container services, such as AWS EC2
and AWS Fargate, take on the order of 10s of seconds to
allocate new resources, initialize, and return the first byte
of data to a user. And that without including the additional
time needed to instantiate the application intended to run
on the VM. Note that although containers can be ’fast start-
ing,’ the cloud services providing them (AWS Fargate) still
need to allocate additional resources for them, adding to the
container instantiation times. This long initialization time
makes it difficult for applications to respond quickly to unpre-
dictable load spikes or node failures. As a consequence, users
commonly overprovision resources, which underutilizes ex-
pensive hardware infrastructure, e.g., memory utilization in
cloud deployments is typically between 50 and 55% [36, 45]
and very rarely exceeds 80% [31].
From here we conclude that VM and container-based

deployments are suitable for slowly evolving loads (that
changes in minutes and hours, e.g., in the 7-day trace in
Figure 1), but not for high, unpredictable load bursts (e.g., in
the second range seen in the 1-minute trace of Figure 1).

2.2 Ephemeral Elasticity
We propose the concept of ephemeral elasticity: running
applications across both VM/containers as well as FaaS. The
goal is to have a single orchestrated application deployment
that takes advantage of both types of infrastructure: one for
predictable load, and the other for request bursts. In this
section, we estimate the potential of ephemeral elasticity
to reduce resource overprovisioning and reduce the cost of
running applications on the cloud. To do so, we conduct a
cost analysis to compare usingAWSLambda to accommodate
load bursts with overprovisioned AWS EC2 VMs. The cost
of each deployment, including the cost of the EC2 baseline
infrastructure and Lambdas for accommodating bursts, can
be calculated as follows:

𝑇∑︁
𝑡=0

[
𝛽

𝛼
× $EC2 +𝑚𝑎𝑥

(
0,
𝛿 t − 𝛽

𝛾
× $Lambda

)]
where 𝛽 is the number of requests served by EC2 VMs; 𝛼

and 𝛾 the throughput per core of EC2 and Lambda (measured
for Deathstar microservice in §6.2). $EC2 and $Lambda are the
cost per second per core (we base on c6g.2xlarge VM and
a 2GB Lambda); 𝛿 t the load (number of requests) at time 𝑡 .
Figure 3 (top) presents the normalized total deployment

cost per hour for the Reddit trace with a varying percent-
age of capacity served by EC2 instances (𝛽 goes from 0 to
the maximum number of requests at any moment). If no
capacity is handled by EC2, then all requests are served

0 20 40 60 80 100
Request/s percentile handled by EC2 (%)

10 2

10 1

100

No
rm

al
ize

d
Co

st

65%
82%

90%
95%

Lambda cost
EC2 cost

EC2+8xLambda
EC2+4xLambda

EC2+2xLambda
EC2+Lambda

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

102

103

Re
qu

es
ts

 p
er

 se
co

nd

EC2 handled request
Lambda handled request

95%
90%

82%
65%

Figure 3. Reddit deployment cost (top) for different EC2
capacities using Lambda to handle requests that exceed ca-
pacity. 1-day Reddit trace (bottom) showing requests handled
by EC2 and Lambda to minimize cost while providing ca-
pacity to handle all requests (c100), 65% of total requests
corresponds to the level of 3% of the observed maximum.
(Section 2.2)

c100 c99 c95 c90
EC2 + Lambda 93.42% 75.53% 43.40% 21.86%

EC2 + 2xLambda 90.31% 65.03% 25.71% 5.87%
EC2 + 4xLambda 85.60% 50.08% 7.17% no-saving
EC2 + 8xLambda 78.95% 31.35% no-saving no-saving

Table 1. Estimated cost savings relative to different EC2
provisioning levels (c100, c99, c95, c90) based on Reddit trace.

by Lambda instances, leading to a high cost per hour. On
the other hand, if all requests are handled by EC2, a sig-
nificant amount of overprovisioning is required to handle
all request bursts, leading to a high cost. The deployment
that minimizes cost and therefore resource overprovisioning
is obtained by combining EC2 and Lambda instances (ap-
proximately 65% of the capacity handled by EC2), thereby
demonstrating the potential of the ephemeral elasticity idea.
If more Lambda resources are necessary to process requests
(because of inflexible resource allocation options, additional
memory, or networking requirements,) total cost increases
and best capacity allocation shifts (e.g., 82% for 2x Lambda
per-request requirements.) Figure 3 (bottom) ilustrated the

3

best capacity allocation between EC2 and Lambda at 65%
level, when the request rate is below 65% of the maximum
the long-running VM capacity handles it, when it is above,
additional ephemeral capacity based on Lambda is used to
scale up temporairly. Table 1 shows estimated cost reduction
when using ephemeral elasticity relative to different levels of
EC2 VM overprovisioning; even when EC2 is provisioned to
handle only 95% of maximum requests per second (c95), and
2 × Lambdas are needed to service requests, the estimated
cost reduction is over 25%.

2.3 Incompatible Datacenter Execution Models
Ephemeral elasticity is not available today as FaaS, and VMs
and containers, operate under two different models:

Network-of-hosts is the classic and dominant datacenter
model that has been in use for decades. Systems are built
around the concept of long-running interconnected hosts
that execute a collection of application processes that com-
municate via the network. Processes can be reached using
various addresses and names, predominantly based on IP
addresses, hostnames, and L4 port numbers.
Event-triggered functions is the model promoted by

FaaS services. Systems are composed of a collection of func-
tions executed in response to events. These functions can
be composed into complex systems by arranging them into
event-driven dataflow graphs. With their fast starting time
and high invocation parallelism, they are suitable to highly
burstable loads as the one depicted in Figure 1. However,
functions are expected to be stateless, have limited network-
ing, and limited execution time (e.g., up to 15minutes in Ama-
zon Lambda and 30 minutes in Azure Functions) [24, 41, 48]
and are more expensive than a similar VM instances.

Takeaway: The mismatch between execution models pre-
vents existing cloud applications from transparently and
efficiently combining FaaS and VM/container infrastructure
to achieve ephemeral elasticity.

3 System Requirements and Assumptions
To achieve the vision of fast ephemeral elasticity, we identify
the following requirements for our Boxer prototype:
Work with existing platforms: To test feasibility and

to avoid making unrealistic assumptions, Boxer should run
on a cloud platform available today. It must not assume any
more privileges than those available to a regular tenant of a
publicly available cloud platform. For example, we use AWS
EC2 as the virtual machine platform and AWS Lambda FaaS
as the serverless platform.

Application transparency: To make the technique gen-
eral and broadly applicable to a large set of existing appli-
cations, Boxer must not rely on modifying or specializing
applications. When Boxer runs generic applications in envi-
ronments for which they were not designed (e.g., FaaS), the

environment must be transparently emulated to match what
unmodified applications expect.
Efficiency: Any introduced overhead (e.g., to emulate

some aspects of the execution environment) must be suffi-
ciently small to not violate the performance objectives or
timing constraints of the user application. For example, the
system must provide network connections to the application
faster than its connection timeout, to avoid getting trapped in
connect-retry loops. Beyond not violating such assumptions,
reducing system overhead is particularly important as FaaS
instances can be very small; this makes system overhead
play a proportionally larger role.

Orchestration compatibility: Cloud application deploy-
ments depend on orchestration systems. If Boxer required
a new or modified orchestration system, it would reduce
its usability and generality. Thus, there should be a way to
use Boxer with unmodified popular orchestration systems,
such as Docker Compose [5], to pave a path to adoption in
practice.

We assume that Boxer and the application are used by the
same tenant so that there is no incentive for the application
code to escape the mechanism used by Boxer. We assume
that the guest applications are cooperative, we do not aim to
prevent applications from circumventing the mechanisms
we provide Second, we assume that individual sub-services
of the target applications (e.g., individual worker nodes, quo-
rum members nodes, microservice nodes) can be scaled up
and down by adding and removing service nodes. This is a
standard paradigm in microservice architectures. Third, we
assume that the application’s long-term persistent state is
either stored in the long-running VMs or in remote cloud
storage, not in the short-lived ephemeral workers. Lastly, our
current system prototype does not aim to provide complete
transparency (e.g., applications can find out they are running
in Boxer) however, we do not aim to cover unusual corner
cases for now as the functionality of typical applications is
not affected.

4 Boxer System Design
We provide an overview of the Boxer system and the reason-
ing that guided our design of such an interposition layer.

4.1 Design Overview
Boxer must emulate the required network-of-hosts execution
model to applications on top of the event-triggered-functions
model of the serverless platform. Since neither applications
nor platforms can be modified, we design Boxer as an in-
terposition layer between cloud applications and platforms,
i.e., a form of cloud overlay (Figure 4). To achieve this, Boxer
intercepts the execution of the guest applications running on
top of it, and uses the platform resources below to emulate
the expected environment for the application.

4

microVM

Cloud Services

microVM

Boxer executing
Long-running Applications

in VMs (IaaS)

Boxer executing
Short-running Applications

in microVMs (FaaS)

Boxer

Boxer

 Application

 Application

Application
Boxer

VM

Application
Boxer

VM

Application
Boxer

VM

Application
Boxer

VM

Boxer control network
Application network

A B A can connect to B natively
A B A can connect to B only with Boxer

Figure 4. An unmodified long-running networked datacen-
ter application running in VMs (temporarily) augmented
with FaaS microVM based ephemeral elasticity using Boxer.

4.2 Intercepting the guest application execution
Interposition must be enforced dynamically at runtime and
not by modifying the application code or binaries. At the
same time, our target platforms include microVMs of pub-
licly available FaaS services (AWS Lambda) that provide
a restricted environment. These restrictions eliminate ap-
proaches to trap application executions that rely on hardware-
accelerated nested virtualization, modifying the kernel, or
loading kernel modules. On the other hand, unprivileged
userspace virtualization techniques based on full dynamic
translation (e.g., QEMU) add too much overhead to be viable.
We also cannot rely on other standard methods to inter-
cept system calls of Linux processes, such as those based
on ptrace or seccomp system calls, because their use is re-
stricted in the unprivileged environment.
Given this combination of constraints, we choose to in-

tercept the application execution at the system C Library
function call level. We implement the interception of the calls
by controlling the dynamic linking of application processes
as they started (described in §5). Hence, our current system
targets applications that dynamically link with the system
C Library and do not directly issue system calls that Boxer
must intercept.

Compared to the other trapping approaches, interposition
at the function call level incurs a negligible performance
penalty of an additional function call, supporting our re-
quirement for low system overhead. To minimize the overall
performance overhead of the emulation, Boxer aims to limit
the intercepted surface area to a minimum. We designed the
system to reduce the number of intercepted functions and
to delegate as much functionality directly to the underlying
platform as possible. This also improves the fidelity of the

Li
nu

x
Pr

oc
es

s

Application
Program / Libraries
[unmodified]

 C Library

 Process Monitor

Li
nu

x
Pr

oc
es

s

Boxer
Node
Supervisor

 C Library

...

Li
nu

x
Pr

oc
es

s

Application
Process / Libraries
[unmodified]

 C Library

 Process Monitor

Linux Kernel

VM / microVM

C Library call serviced by Boxer Process Monitor

Local Boxer service connections (UDS)
C Library call followed by syscall(s) Boxer system components

Figure 5. Boxer node (VM, microVM, or a container).

emulation since fewer mechanisms must be re-implemented.
In particular, Boxer leaves signals and memory management
directly to the underlying platform, and the interception of
system C Library calls are limited to the control path opera-
tions only. Most significantly, we avoided intercepting data
path calls (e.g. send, write, recv, read, sendfile) and I/O
notification calls (e.g. epoll, select) providing no-overhead
performance for those operations.

Figure 5 shows the components running on each node in a
distributed application cluster with Boxer. The Boxer Process
Monitor (§5) is the system component that is responsible for
intercepting the necessary system C Library calls. It is loaded
by the Node Supervisor (described further in §5) into every
guest application process. The Process Monitor is limited to
a thin shim that interacts with the local Node Supervisor
that provides services needed for the emulation.

4.3 Emulating the network-of-host model
Emulating the network-of-hosts model that spans all nodes
participating in a Boxer setup (VMs, containers, microVMs
of FaaS) requires providing additional services to the guest
applications. Boxer exposes all nodes, including FaaS mi-
croVMs as networked hosts to the guest application. To pro-
vide network connectivity between different hosts, Boxer
must provide network transport between the hosts, man-
age network addresses, and provide hostname resolution, all
these services are provided by the Node Supervisor.

This separation of functionality between stateless and thin
Process Monitors and a Node Supervisor providing the ser-
vices to all local processes requires a communication channel
capable of request-response commands, sending file descrip-
tors, and signaling some I/O notifications without interfering
with the guest application. For the former two, we chose to
use Unix domain sockets because they can be used to send
file descriptors between processes. For the later, we devel-
oped a technique of delivering the required signals to Process
Monitors using marked local stream sockets (we later refer to
them as signal sockets) that requires minimal mechanism in

5

the Process Monitor and is compatible with the guest using
blocking and non-blocking I/O.

5 System Implementation
In the following sections we discuss some implementation
aspects of the Process Monitor (PM), the Node Supervisor
(NS), and how they interact to provide the environment emu-
lation, what services are provided and how the system can be
transparently used with container orchestration tools (§5.1).

Process Monitor (PM). Boxer PM is responsible for selec-
tively intercepting the execution of guest application pro-
cesses to emulate the desired environment. Every guest pro-
cess as it is loaded to be executed by Boxer is first dynamically
linked with the PM library. The library exports a set of sym-
bols that are normally exported by the system C Library, and
it is linked between the platform system C Library and the
application program and application libraries (Figure 5). This
provides an interposition layer where the PM library can
intercept the guest application execution by selectively inter-
cepting system C Library calls made by the guest application
processes. Currently, the intercepted calls are for stream
socket (socket, bind, connect, listen, accept), network
address and hostname resolution (getaddrinfo, uname), and
file access (open, close). Together with their variants and
companion functions, a total of 24 functions are intercepted.
Notably, the selective interception avoids intercepting any
data path functions (such as read, recv, send, write, etc.)
or I/O notification functions (such as epoll, select, etc.).
The intervention in the execution of the guest processes is
limited to control plane operations for establishing network
connections and network and file system naming - there is
no additional overhead once network connections are estab-
lished or files are opened.

The functionality in the PM is kept to a minimum, with no
state persisted between intercepted calls, and with most of
the functionality accessed through the NS services. PMs ac-
cess their local NS by exchanging messages on a named Unix
domain socket, referred to as service connections. For some of
the intercepted calls, e.g., getaddrinfo, the functionality of
PM is limited to just parsing the arguments, sending an ap-
propriate request message (in this case NameLookupReq) to
the NS and then formatting and returning the results to the
caller. For other intercepted functions, the procedure before
sending a request on service connections is more involved.
For example, the protocol requires that when handing an in-
tercepted accept function, a non-blocking native accept call
must be made before potentially proceeding with sending an
accept request to Boxer. This is because if Boxer has a ready
connection to be accepted by the guest program, and no
process is blocked to accept it, the program may be waiting
for the I/O event to be delivered before calling accept (e.g.
via epoll). To address such a scenario, Boxer NS will create a
signal connection, a local connection from a reserved address

Application Process P1

accept(s1)

service(i1, accept)

Application Process P2

accept(s2)

service(i1, accept)

Application Process P3
epoll()

accept(s3)

service(i2, accept)

app-s-2

app-s-1

i-node app-socket
i1
i2
:

listen-addr connection-queue
addr1

:

connection-q-1
connection_req(addr1)

Socket LayerTransport Layer N
od

e
Su

pe
rv

is
or

Blocked service connections Signal connections
Internal datastructure references Internal service requests

Figure 6. A configuration of core internal data structures of
the stream socket layer for listening sockets (§5).

only to trigger a matching I/O event delivery to the guest
program. If the guest process then calls accept, the PM will
first accept the signal connection, discard it, and then pro-
ceed to send the service request to the NS to receive the new
socket from Boxer (as a file descriptor sent over the service
connection) and then return it to the guest program as the
return value from the original accept call. Handling bind
and connect also requires substantial setup before issuing
service requests, but the main mechanisms ara implemented
as services, leaving the PM stateless and relatively simple.

Node Supervisor (NS). The NS is an unprivileged process
that runs in every node (VM, container, or microVM) partici-
pating in the Boxer network (Figure 5). The NS is responsible
for managing the local guest application processes, servicing
the requests of the local PMs, and maintaining the control
network with NSs of other nodes in the network.
The NS starts the specified guest application programs

(with the specified arguments and additional configuration
environment variables) and preloads all of their processes
with the PM library (§5). It then listens for the PMs to open
local service connections and start issuing requests.
The secondary role of the NS is to bootstrap and main-

tain a control network with other remote NSs. The control
network is used to send and receive commands between
remote nodes, including network setup requests. Currently,
the control network is based on direct TCP connectivity
that supervisors establish between nodes when they start.
Internally, the supervisor forwards the local and remote re-
quests to one of its local services, such as the networking or
coordination service discussed in the following sections.

Network Service. Conceptually, the network service is com-
posed of two layers: the socket layer and the transport layer.
The socket layer provides the mechanism for creating and

6

setting up guest application sockets. The network transport
layer (not meant to be interpreted with OSI model) provides
network data delivery between Boxer nodes that can back
the sockets created by the socket layer.

Socket Layer The socket layer interacts with the PMs from
above and with the transport layer from below. When a PM
intercepts a relevant socket call, e.g., connect call to estab-
lish a stream connection to a destination in Boxer network, it
will send a request to the network service to initiate the con-
nection to the remote host. The socket layer will then request
the connection from the transport layer. Once the connection
is established, the application process will be unblocked with
the correctly configured socket, and the guest application
can proceed unaware of the behind-the-scenes process. To
support unmodified datacenter applications, Boxer socket
layer must implement a mechanism to support the complete
(stream) socket interface with correct error handling, includ-
ing non-blocking I/O, and interactions with other system
features, such as the ability to share sockets between differ-
ent processes.

Figure 6, shows a subset of internal data structures on the
passive side of the socket layer. It shows the state configured
for 2 listening sockets. One of the sockets is shared between
two guest application processes (P1 and P2), which are both
waiting in blocking accept to receive new connected sockets.
Process P3 has a different socket and uses non-blocking I/O
to accept new connections. However, both of the listening
sockets are bound to the same local address. This example is
not an uncommon interaction of features used by datacenter
applications, and Boxer must be able to handle it.

The socket layer keeps track of sockets used by the guest
processes. First, Boxer maintains the mapping between in-
odes and sockets in the application-socket-table, which can
be used to uniquely identify each socket in the system.When
a process monitor sends a service request to the network
service, first, it may need to look up the inode associated
with the relevant socket and use that in the request. The
socket layer can then map it to the unique socket data struc-
ture. In Figure 6, both processes P1 and P2 request accept
service on the same inode value i1 which maps their re-
quests to the same listening socket entry. Because these
two requests are blocking, the PMs will block waiting on
the responses. If there are no new connections available,
the socket layer adds the service connections to the accept-
queue of the app-s-1 socket record, keeping the processes
blocked. The accept queue will be drained once there are
matching new connections that can be passed back to the
blocked PMs, which will then return the new sockets to
the guest processes. Each listening socket record contains a
reference to a connection-queue that will accumulate new
matching connections, in the Figure 6 example, all sock-
ets point to the same connection-queue connection-q-1.
Connection-queues are created when guest processes create

listening sockets bound to a new address. They are added
to the connect-queue-table that is indexed by the listening
address. In the example, there is only one connection-queue
because both sockets app-s-1 and app-s-2 are listening on
the same address addr1.
When the transport layer makes a connection request

to the socket layer, it will use the connection destination
address in the request. This address is then used to lookup
a matching connection-queueu, if one is found, it means
that there is a guest process listening for such connection,
and transport setup may continue. If there is no match, the
request is denied, and the transport layer can propagate the
error to the active side, potentially resulting in the (remote)
client process receiving a connection refused error.

As new connections in a connection-queue become ready,
references to to the matching listening sockets are used to
return the new sockets to the blocked processes on the accept
queues (e.g., Process 2 on the accept queue of socket app-s-
1). The PMs are unblocked returning the new sockets to the
application.

To handle non-blocking accept requests by the guest pro-
cesses, when a new connection is available, the network
service will create a new signal-connection to the local ad-
dress that is bound to the real socket that the guest pro-
cess is listening on. This is also the socket that the guest
process (oblivious to what is actually happening) will add
to its I/O notifications (e.g., epoll_ctl) to be notified by the
kernel if there are new connections to accept. The signal-
connection is configured to trigger this event, and if the guest
process chooses to accept, the PM will hide (and discard) the
signal-connection and make a request to the network ser-
vice to retrieve the new connection from the appropriate
connection-queue, or return immediately if none are left.

Transport Layer This layer is responsible for the setup of
data delivery for the sockets managed by the socket layer.
Currently, Boxer has implementations of direct TCP, NAT-
hole-punching TCP transport, and IP-forwarding-proxy TCP
transport. Other transports, such as those based on S3, Dy-
namoDB, or other intermediary services or overlays, could
be implemented in the future. The transport layer imple-
mentations use the control network managed by the NSs
to exchange necessary messages to configure connectivity.
For example, the NAT-hole-punching TCP transport that
Boxer uses in AWS Lambda, exchanges messages with re-
mote Boxer nodes to agree on the addresses to be used for
NAT-hole-punching. Once agreed, direct TCP connections
are established and passed up to the socket layer and then
to the guest processes, transparently to the application.

Coordination Service. As Boxer nodes join the network,
they first contact a node that is the seed coordinator to be
assigned a unique node ID, bootstrap their network mem-
bership set, and register their name. All Boxer nodes run a

7

coordinator service that listens for membership updates to
maintain its local membership set and to propagate updates
to other nodes connected to it. The membership set contains
records for node-ids, their addressable IP addresses, and the
(optionally) assigned names.

The NS can be configured to listen to the coordination
service and only start executing its guest application when a
certain number of nodes are present in the network orwhen a
minimum number of nodes with specified names are present
(e.g., only when a predefined number of workers are ready).
When the supervisor starts the guest application, it populates
a set of local files with a list of other nodes, names, and node
ids and the node id of the local node. Some guest applications
can use these static files as part of their configuration. In
addition to the static files, guest applications can use a local
Unix domain socket interface to connect to the coordination
service and stream dynamic membership updates.

Name Resolution. Names assigned to nodes in a Boxer net-
work are transparently available to the guest applications.
Guest processes that use standard system C Library name
resolution functions that are intercepted by the program
monitor, such as getaddrinfo, will transparently query the
coordinator service for matches. If the coordinator service
produces no matches, the name resolution is forwarded to
the underlying host and follows the standard path. Other
than the assigned names, the coordinator resolver also pro-
vides some canonical hostnames that can ease application
configuration, e.g., ‘node-ID‘ name will always resolve to
the IP address of the Boxer node with the named ID.

Utilities. Boxer provides additional useful utilities, one of
which is the ability to transparently remap file system names
visible to guest applications. This is useful when applications
expect hard-coded pathnames that are not available or are
restricted in FaaS. Boxer also uses this mechanism to redirect
the application’s accesses to some ‘/etc/‘ configuration files
that are read-only in FaaS environment (e.g.,Boxer replaces
‘/etc/resolv.conf‘ with custom resolver configurations.)

5.1 Container Orchestration with Boxer
Container-based orchestration systems, such as Kubernetes [2],
Docker Swarm [1], or Docker Compose [5], are a common
way to deploy and manage conventional datacenter applica-
tions. Therefore integrating Boxer with these existing orches-
tration frameworks improves usability, lowers the barrier to
adoption, and reduces the level of Boxer-specific customiza-
tion needed. To enable this we produce Boxer versions of
commonly used base container images that can be used to
transparently define application containers as if Boxer was
not present, and use trampoline container technique to in-
voke Boxer functions or containers via the same container
orchestration systems (Figure 7). Boxer trampoline contain-
ers are context-sensitive containers that start the container
execution differently depending on their environment.When

trampoline
container

container
registry

Dockerfile
FROM rapid

(2) register twin function

twin function

FaaS
platform

(1) build/register container

long-running
containers

(5) invoke
 twin functioncontainer

orchestrator

(3) instantiate

 containers

(4) instantiate container

 plat=function

Figure 7. Container Orchestration with Boxer.

103

TCP RTT latency [micros]
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

103 104 105 106

TCP connect time [micros]
0.0

0.2

0.4

0.6

0.8

1.0

Function to Function
VM to Function
Function to VM
Function to VM (native)
VM to VM
VM to VM (native)

Figure 8. Empirical CDF of RTT latencies (left) and TTFB
TCP connection establishment times (right) between differ-
ent types of connecting and accepting hosts running Boxer
or without (native).

the orchestrator starts a container but specifies target plat-
form to be a function, the container entrypoint does not start
the Boxer application in the container; instead, it collects the
environment variables and the specified run command and
invokes the corresponding twin function, passing the seri-
alized environment as the invocation event, which is then
used by function NS to join the overlay and start the appro-
priate container entrypoint running in FaaS. This results in a
new Boxer node being added and the application running in
the function, not in the original container. The original con-
tainer remains running as a phantom-container, receiving
logs, waiting for the function container to terminate, sig-
naling termination to the container orchestrator that stays
under the illusion that the application is running locally.

6 Evaluation
To evaluate Boxer we run, unmodified, DeathStarBench [23],
a suite of cloud microservice benchmarks deployed using
container networks that mimic how large scale, complex
distributed applications are often deployed in the cloud. We

8

use the Zookeeper benchmark to demonstrate how Boxer
helps to quickly recover from node failures.

6.1 Microbenchmarks
To confirm that the properties of Boxer provided networking
are compatible with the ephemeral elasticity use case, we
measured connection establishment times and latency of
Boxer provided TCP-hole-punching network transport for
different combinations of endpoints. We used EC2 m4.large
VMs and Lambda Functions with 3007MB of memory as end-
points. To measure connection establishment times, we mea-
sured time-to-first-byte (TTFB) observed by the client guest
process running in Boxer connecting to a remote server guest
process also running in Boxer. For comparison, we measured
the native times without using Boxer for the two possible
combinations of functions connecting to VM and VM-to-VM
directly. To measure latency, the client program measured
128 rounds of 1024 byte ping-pong exchanges on an estab-
lished connection. For each endpoint combination, the ex-
periments were repeated 1024 times on 32 distinct endpoint
pairs. Figure 8 shows the empirical CDF of the measurements.
As expected, the connection establishment times when using
Boxer TCP-hole-punching network transport compared to
native times show the overhead of the connection setup and
extra message round. Mean TTFB of VM-to-VM connections
without Boxer (native) is 408𝜇𝑠 while with Boxer is 1067𝜇𝑠 .
The latency results confirm that Boxer adds no data path
overhead once connections are established. The mean RTT
for VM-to-VM connections with and without Boxer are very
similar at 198𝜇𝑠 and 194𝜇𝑠 , respectively, and have similar
distributions. Boxer provided Function-to-Function connec-
tions have mean TTFB connection establishment of 2735𝜇𝑠 ,
and RTT latency of 694𝜇𝑠 with an increased dispersion. We
find these acceptable for our use cases, especially consid-
ering that without Boxer the application processes cannot
establish Function-to-Function connections at all.

6.2 Running DeathStarBench on Boxer
Next, we focus on DeathStarBench’s socialNetwork, which of-
fers a social network service to users and is organized using
three microservice layers: i) front-end layer (implemented us-
ing an NGINX webserver); ii) logic layer (implemented using
stateless Thrift services that communicate through RPCs);
iii) caching and storage layer (implemented with MongoDB
and Memcached instances). In socialNetwork, user requests
are received by the front-end layer (NGINX web server) and
then routed to one of the services in the logic layer. Depend-
ing on the user request, the logic layer may perform one or
multiple requests to the caching and storage layers. Since the
logic layer is stateless (i.e., it contains no internal persistent
state), it can be deployed on AWS Lambda.

We did not have to make any modifications to the applica-
tion code to deploy DeathStarBench on AWS Lambda with
Boxer. The benchmarkwas onlymodified to i) use hostnames

2000 4000
Throughput (ops/s)

0

20

40

60

90
p

La
te

nc
y

(m
s)

Read workload

Boxer EC2 VMs and Lambdas
EC2 VMs

Boxer EC2 VMs-only
Fargate containers

500 1000 1500
Throughput (ops/s)

0

20

40

60
Write workload

Figure 9. DeathStarBench results in a static deployment.

instead of fixed local IPs (for example, replace 192.168.1.7
by nginx-thrift), and ii) run all of the components of the
front-end and logic layers using Boxer.

Methodology. To evaluate Boxer, we use four deployments
(refered to as EC2-VMs, Boxer-EC2-VMs-only, Boxer-EC2-VMs-
and-Lambdas, Fargate-containers), one baseline and three ex-
ercising Boxer in different ways. (1) All components deployed
as EC2VMs(baseline, EC2-VMs). (2) All components deployed
as VMs in EC2 but the components the front-end and logic
layers use Boxer (Boxer-EC2-VMs-only). This deployment
measures the performance overhead of using Boxer. (3) A
mixed deployment with front-end, and caching and storage
layers are deployed as VMs, and logic layer deployed using
Lambdas (Boxer-EC2-VMs-and-Lambdas). (4) A mixed de-
ployment with the logic layer using AWS Fargate container
service (Fargate-containers).

To measure the throughput and latency of the end-to-end
system we use two workloads included in the DeathStar-
Bench suite. A read workload that issues requests to read
a user timeline in the socialNetwork, and a write workload
that creates follow relationships between users. Both work-
loads are generated using the wrk [10] tool which builds and
issues requests to the front-end layer. The performance of
both workloads (read and write) is reported separately as
each workload stresses the Boxer overlay in a different way.
The read workload mostly transfers data from the caching
and storage layer (VMs), to the logic layer (VMs or Lambdas),
and then to the front-end layer (VMs). The write workload
operates in the opposite direction.
All experiments in this section were conducted in AWS

Ohio (us-east-2) region. All VMs use a base Amazon Linux
2 [3]. For front-end, and caching and storage layers, we use
t3a.micro instances due to the memory requirements of the
services included in these layers. For the logic layer, when
deployed in VMs, we use t3a.nano instances. Each Lambda
is configured with 2048MB of memory (we experimentally
determined that in us-east-2, the performance of a 2048MB
Lambda is similar to a t3a.nano VM instance). For Fargate,
we deploy containers also with 2048MB of memory and 1.0

9

0 20 40 60 80 100 120 140
Time [seconds]

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 [o

ps
/s

]

Boxer EC2 VMs and Lambdas
Overpovisioned EC2 VMs
Scaling action

Boxer EC2 VMs-only
EC2 VMs
Fargate containers

Figure 10. DeathStarBench write workload comparing elas-
tic deployments (Section 6.2).

vCPU unit (this configuration is also the one that yields faster
container startup time, see Figure 2).

Overhead of using Boxer. Figure 9 shows the results for
both read and write workloads across the four different types
of deployments. For each workload, we collect the average
throughput and 90th percentile latency with an increasing
load in the system. Boxer introduces only a small overhead.
For the read workload, the EC2 deployment becomes satu-
rated at 3270 ops/s while the Boxer-EC2-only becomes satu-
rated at 3070 ops/s. For the same data points, the 90p latency
of a single request for the EC2 and Boxer-EC2-only deploy-
ments are 3.18 ms and 5.07 ms, respectively. Note that these
latencies are measured end-to-end, thus include multiple
internal microservice to microservice requests. The write
workload demonstrates similar results. The EC2 and Boxer-
EC2-only deployments become saturated at 1411 ops/s and
1294 ops/s, with latencies of 7.07 ms and 7.56 ms, respectively.

We use a similar analysis to measure the overhead of
launching the logic layer services in AWS Lambda by com-
paring the Boxer-EC2-only and Boxer deployments. Figure 9
shows that for the read workload, the Boxer deployment
saturates at 3556 ops/s with a 90p latency of 7 ms. For the
write workload, the same deployment saturates at 1189 ops/s
and with a 90p latency of 4.55 ms.

We conclude that using Boxer incurs a small performance
overhead. Moving services to Lambda also incurs a small
overhead due to the different ways CPU and network are allo-
cated to VMs and Lambdas. One could increase the memory
budget assigned to lambdas to increase their vCPU allocation
and thus close the gap between Boxer-EC2-only and Boxer.

Elasticity through Boxer. We now show how Boxer can
provide ephemeral elasticity to increase the elasticity of mi-
croservices running on VMs and containers by leveraging

c99.0 c99.5 c99.9 c100
0

1

2

3

4

5

6

Co
st

 $
/h

r

14% 57%
61% 76%

EC2 VMs and Lambda [Boxer]
EC2 VMs only

Figure 11.DeathStarBench logic layer absolute cost and cost
reduction based on 1-day Reddit trace sample (Section 6.2).

serverless platforms. We start by deploying all logic layer
services on VMs. When the load increases, additional logic
layer services are allocated to handle the increased load ei-
ther on VMs, containers, or Lambdas. In addition, we also
include an overprovisioned VM deployment (Overp. EC2) in
which already allocated resources are added to the pool of
workers. Our goal is to compare the elasticity of different
deployment types.

Figure 10 presents a throughput trace for different deploy-
ments. Throughput is measured using wrk [10] by looking
at how many requests the front-end layer can handle per
second. The tool dynamically increases the throughput based
on the perceived system capacity. After approximately 55
seconds (dashed vertical line), a scaling action is taken to add
a total of 12 workers to the pool of workers in the logic layer
(one extra replica for each service in the logic layer). EC2 and
Fargate take approximately 45 seconds to fully deploy all new
workers (t=100s), while Lambda and overprovisioned EC2
scale almost immediately (approximately 1 second, t=55s).
Using Boxer to accommodate bursts reduces the time to add
new workers to the pool by approximately 45× compared
to EC2 and Fargate, providing comparable performance to
VM-based overprovisioning.

Figure 11 shows comparison of cost for using EC2 VM-
based overprovisioning and Boxer elasticity (using EC2 and
Lambda). Based on a 1-day Reddit trace sample and the
DeathStarBench throughput benchmarks (Figure 9), we cal-
culated the necessary VMs for the logic layer to be overpro-
visioned to handle at least 99.0, 99.5, 99.9, and 100 percentile
of requests/s in the trace (EC2-only). We then compared it
to the cost of allocating a single VM instance for each logic
layer service in VMs and on-demand dynamically scaling up
using Boxer to Lambdas to absorb load bursts. We observe
that the cost reduction for using Boxer provided elasticity
ranges from 14% to 76% depending on the capacity levels.

10

0 10 20 30 40 50 60 70
Time [seconds]

0
500

1000
1500
2000
2500
3000
3500
4000

Th
ro

ug
hp

ut
 [o

ps
/s

]

Boxer EC2 VMs and Lambda
EC2 VMs
VM node fault

Recovery w/ Boxer Lambda
Recovery with EC2 VM

Figure 12. Recovering from node crash in a 3-node EC2
Zookeeper cluster using EC2 and Lambda using Boxer.

6.3 Elastic Fault Tolerance in Zookeeper
Boxer provided elasticity can also be used to reduce down
time due to recovery from node crashes. Minimizing node
down time is crucial in highly dependable systems such as
Zookeeper as read throughput drops and system guarantees
may become compromised if additional faults happen before
the first one is recovered. Moreover, having larger Zookeeper
clusters to accommodate more faults is not common as write
throughput degrades with additional replicas.

For this scenario, we setup a 3-node Zookeeper [25] cluster
deployed on EC2. Using this cluster, we forcibly shutdown
one of the nodes and recover from the fault using either
a newly allocated EC2 VM or using a Lambda with Boxer.
We use t3a.micro VMs as Zookeeper nodes and Lambdas
with 2048 MBs. We configure Zookeeper to allow dynamic
reconfiguration, i.e., automatically adapt the quorum every
time a new node leaves or joins the network. Boxer is used to
transparently allow a Zookeeper node deployed in a Lambda
instance to join the quorum. In this recovery scenario, the
rapidly deployed Zookeeper node in the short-lived Lambda
function stays active only while a more permanent replica is
being instantiated.We use a read-only workload based on the
Zookeeper Benchmark1. Figure 12 shows an execution trace
of the workload throughput through time. After approxi-
mately 25 seconds, one of the Zookeeper VMs is shutdown
and a new instance (EC2 or Lambda) is started to replace the
failed node. Using Boxer, the fault recovered in under 6.5
seconds compared to 37.0 seconds with VMs (EC2), a 5.7x
improvement in Zookeeper node recovery time.

7 Discussion
Opportunities. The elasticity bottleneck shifts from re-
source allocation to the application. By leveraging the
1https://github.com/brownsys/zookeeper-benchmark

ephemeral elasticity, datacenter applications can quickly gain
access to new resources; however, that does not necessar-
ily mean that the applications can leverage the resources
as quickly as they become available. For example, load bal-
ancers, or controllers, may be configured to rebalance their
workload among workers at an interval that is too high.
Current limitations. Several limitations in the current pro-
totype will be addressed as part of future work: (1) The
current implementation of the process monitor relies on the
lightweight dynamic linking mechanism for interposition,
which cannot handle applications issuing system calls di-
rectly. We are investigating techniques based on lightweight
selective binary rewriting [50] to extend the generality of
the process monitor to arbitrary processes. (2) Boxer has
only been tested on AWS, we plan to support other cloud
platforms, but there may be provider-specific logic to adapt
to each platform. (3) The interfaces that Boxer emulates have
complex semantics and, combined with the additional con-
straints, make handling all of the cases challenging. We have
successfully tested Boxer with several complex systems, but
we are aware of corner cases that we have not handled yet,
and we are working to make the system more complete.

8 Related Work
Although initially designed for event-triggered stateless func-
tions, FaaS is now being presented as the next generation
of cloud computing [41]. Fouladi et al. demonstrated using
FaaS as a supercomputer on-demand to run highly parallel
jobs like video encoding and software compilation [20, 21].
The gg framework enables users to run applications on FaaS
by providing an intermediate representation and SDKs with
which users can express their application as a composition
of lightweight, functional containers [20]. Boxer pursues a
similar vision but rather than just accelerating trivially par-
allel jobs, it aims to leverage FaaS for elasticity acceleration
of off-the-shelf cloud applications. Boxer also helps generic
applications adapt to node failures and load spikes without
resorting to overprovisioning, similar to how MArk [53]
spills to FaaS to accommodate ML inference load spikes, Bee-
hive [56] utilizes FaaS nodes to offload load spikes for JVM-
based applications, and Pixels-Turbo [15] accelerates query
processing of unpredictable workload spikes with FaaS.
Improving elasticity by making compute and memory

resources more fungible is an active area of research [12, 37,
38]. However, we argue that cloud users can benefit from
high elasticity and greatly reduce overprovisioning for their
applications without waiting for cloud providers to evolve
and optimize their underlying infrastructure.

Complementary to Boxer, others have explored enabling
general computation on FaaS by providing GPU support [8,
27, 39], familiar concurrency APIs [55], transactional work-
flows [42, 54], atomicity guarantees over shared storage [44],
and handling timeouts by checkpointing and generating

11

continuation functions [55]. Other optimizations such as
locality-oriented scheduling [22], cold-start reduction [33],
and memory footprint optimizations [40] are orthogonal to
Boxer as our system is implemented on top of such serverless
architectures and benefits from such optimizations.

Prior work has addressed function networking limitations
by using intermediaries to relay messages between functions.
mu [21] proposed a framework for parallel computation and
communication across buffers and relaying messages be-
tween functions. Others [28, 32, 34, 35, 51] leveraged external
storage to exchange data between functions. Projects such
as InfiniCache [47] and gg [20] use a proxy-based approach.
Nat-hole-punching in AWS Lambda has been previously
leveraged for data analytics and for function communica-
tion primitives by [17, 48], but not to transparently provide
network-of-hosts model to datacenter applications.

9 Conclusion
We presented Boxer, a system that transparently improves
cloud application elasticity. We demonstrated that it is possi-
ble to unbundle the event-triggered functions programming
model of FaaS from its underlying microVM resources and
to provide the network-of-hosts programming model on top
of them. We showed that this enables running cloud appli-
cations using publicly available FaaS infrastructure, which
can be used to temporarily augment long-running unmod-
ified cloud applications with fast ephemeral elasticity. We
showed that the availability of such fast ephemeral elasticity
provides elasticity-fill that can significantly reduce the level
of overprovisioning required to react to dynamic load and
failure recovery.

References
[1] [n. d.]. Docker Swarm overview. https://docs.docker.com/engine/

swarm/
[2] [n. d.]. Kubernetes. https://kubernetes.io/
[3] 2023. Amazon Linux 2. https://aws.amazon.com/amazon-linux-2/
[4] 2023. AWS Lambda. https://aws.amazon.com/lambda
[5] 2023. Docker Compose. Retrieved 2023-07-27 from https://docs.

docker.com/compose/
[6] 2023. May 2015 Reddit Comments. https://www.kaggle.com/datasets/

kaggle/reddit-comments-may-2015
[7] 2023. Microsoft Azure Functions. https://azure.microsoft.com/en-

us/services/functions
[8] 2023. Nuclio Serverless Platform. https://nuclio.io/
[9] 2023. Prime Video Switched from Serverless to EC2 and ECS to Save

Costs. https://www.infoq.com/news/2023/05/prime-ec2-ecs-saves-
costs/

[10] 2023. wrk - a HTTP benchmarking tool. https://github.com/wg/wrk
[11] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.
In NSDI.

[12] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang,
Brian Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda,
Sameh Elnikety, Marcus Fontoura, and Ricardo Bianchini. 2020. Pro-
viding SLOs for Resource-Harvesting VMs in Cloud Platforms. In 14th

USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 20). 735–751. https://www.usenix.org/conference/osdi20/
presentation/ambati

[13] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. 2010. A View of Cloud Com-
puting. Commun. ACM 53, 4 (apr 2010), 50–58.

[14] Noman Bashir, Nan Deng, Krzysztof Rzadca, David Irwin, Sree Kodak,
and Rohit Jnagal. 2021. Take It to the Limit: Peak Prediction-Driven Re-
source Overcommitment in Datacenters. In Proceedings of the Sixteenth
European Conference on Computer Systems (Online Event, United King-
dom) (EuroSys ’21). Association for Computing Machinery, New York,
NY, USA, 556–573. https://doi.org/10.1145/3447786.3456259

[15] Haoqiong Bian, Tiannan Sha, and Anastasia Ailamaki. 2023. Using
Cloud Functions as Accelerator for Elastic Data Analytics. Proc. ACM
Manag. Data 1, 2, Article 161 (jun 2023), 27 pages. https://doi.org/10.
1145/3589306

[16] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. 2019. The Rise of Serverless Computing. Commun. ACM
62, 12 (2019), 44–54.

[17] Marcin Copik, Roman Böhringer, Alexandru Calotoiu, and Torsten
Hoefler. 2023. FMI: Fast and Cheap Message Passing for Serverless
Functions. In Proceedings of the 37th International Conference on Super-
computing (Orlando, FL, USA) (ICS ’23). Association for Computing
Machinery, New York, NY, USA, 373–385. https://doi.org/10.1145/
3577193.3593718

[18] Eli Cortez, Anand Bonde, AlexandreMuzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource Central: Understand-
ing and Predicting Workloads for Improved Resource Management
in Large Cloud Platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17). 153–167.

[19] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In Proceedings of the
Nineteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS).

[20] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chat-
terjee, Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019.
From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of
Transient Functional Containers. In USENIX ATC.

[21] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam,William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. 2017. Encoding, Fast and Slow:
Low-Latency Video Processing Using Thousands of Tiny Threads. In
NSDI.

[22] Alexander Fuerst and Prateek Sharma. 2022. Locality-Aware Load-
Balancing For Serverless Clusters. In Proceedings of the 31st Interna-
tional Symposium on High-Performance Parallel and Distributed Com-
puting (HPDC ’22).

[23] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, FukangWen, Catherine Leung, SiyuanWang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud & Edge Systems.
In ASPLOS.

[24] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. 2019. Serverless Computing: One Step Forward, Two Steps Back.
In CIDR.

[25] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
2010. ZooKeeper: Wait-Free Coordination for Internet-Scale Systems
(USENIX ATC’10).

12

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://aws.amazon.com/amazon-linux-2/
https://aws.amazon.com/lambda
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.kaggle.com/datasets/kaggle/reddit-comments-may-2015
https://www.kaggle.com/datasets/kaggle/reddit-comments-may-2015
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
https://nuclio.io/
https://www.infoq.com/news/2023/05/prime-ec2-ecs-saves-costs/
https://www.infoq.com/news/2023/05/prime-ec2-ecs-saves-costs/
https://github.com/wg/wrk
https://www.usenix.org/conference/osdi20/presentation/ambati
https://www.usenix.org/conference/osdi20/presentation/ambati
https://doi.org/10.1145/3447786.3456259
https://doi.org/10.1145/3589306
https://doi.org/10.1145/3589306
https://doi.org/10.1145/3577193.3593718
https://doi.org/10.1145/3577193.3593718

[26] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso,
Ana Klimovic, Ankit Singla, WentaoWu, and Ce Zhang. 2021. Towards
Demystifying Serverless Machine Learning Training. In Proceedings
of the 2021 International Conference on Management of Data. 857–871.

[27] Jaewook Kim, Tae Joon Jun, Daeyoun Kang, Dohyeun Kim, and Daey-
oung Kim. 2018. GPU Enabled Serverless Computing Framework.
In Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP). 533–540.

[28] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral
Storage for Serverless Analytics. In OSDI. 427–444.

[29] David H. Liu, Amit Levy, Shadi Noghabi, and Sebastian Burckhardt.
2023. Doing More with Less: Orchestrating Serverless Applications
without an Orchestrator. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 1505–1519. https://www.usenix.org/conference/nsdi23/
presentation/liu-david

[30] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin
Bai. 2017. Imbalance in the cloud: An analysis on Alibaba cluster
trace. In 2017 IEEE International Conference on Big Data (Big Data).
2884–2892. https://doi.org/10.1109/BigData.2017.8258257

[31] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin
Bai. 2017. Imbalance in the cloud: An analysis on Alibaba cluster
trace. In 2017 IEEE International Conference on Big Data (Big Data).
2884–2892. https://doi.org/10.1109/BigData.2017.8258257

[32] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lam-
bada: Interactive Data Analytics on Cold Data Using Serverless Cloud
Infrastructure. In SIGMOD.

[33] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
USENIX ATC.

[34] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel
Madden. 2020. Starling: A Scalable Query Engine on Cloud Functions.
In SIGMOD.

[35] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In NSDI
19.

[36] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz,
and Michael A. Kozuch. 2012. Heterogeneity and Dynamicity of
Clouds at Scale: Google Trace Analysis. In Proceedings of the Third
ACM Symposium on Cloud Computing (San Jose, California) (SoCC ’12).
Association for Computing Machinery, New York, NY, USA, Article 7,
13 pages. https://doi.org/10.1145/2391229.2391236

[37] Zhenyuan Ruan, Shihang Li, Kaiyan Fan, Marcos K. Aguilera, Adam
Belay, Seo Jin Park, and Malte Schwarzkopf. 2023. Unleashing True
Utility Computing with Quicksand. In Proceedings of the 19thWorkshop
on Hot Topics in Operating Systems (Providence, RI, USA) (HOTOS ’23).
Association for Computing Machinery, New York, NY, USA, 196–205.
https://doi.org/10.1145/3593856.3595893

[38] Zhenyuan Ruan, Seo Jin Park, Marcos K. Aguilera, Adam Belay, and
Malte Schwarzkopf. 2023. Nu: Achieving Microsecond-Scale Resource
Fungibility with Logical Processes. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23). Boston, MA,
1409–1427.

[39] Klaus Satzke, Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel
Stein, Andre Beck, Paarijaat Aditya, Manohar Vanga, and Volker Hilt.
2020. Efficient GPU Sharing for Serverless Workflows. In Proceedings
of the 1st Workshop on High Performance Serverless Computing (HiPS
’21). 17–24.

[40] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. 2022. Memory deduplication for serverless computing with
Medes. Proceedings of the Seventeenth European Conference on Com-
puter Systems (2022).

[41] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,
Ion Stoica, and David A. Patterson. 2021. What Serverless Computing
is and Should Become: The next Phase of Cloud Computing. Commun.
ACM 64, 5 (April 2021), 76–84.

[42] Srinath Setty, Chunzhi Su, Jacob R. Lorch, Lidong Zhou, Hao Chen,
Parveen Patel, and Jinglei Ren. 2016. Realizing the Fault-Tolerance
Promise of Cloud Storage Using Locks with Intent. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16).

[43] Won Wook Song, Taegeon Um, Sameh Elnikety, Myeongjae Jeon, and
Byung-Gon Chun. 2023. Sponge: Fast Reactive Scaling for Stream Pro-
cessing with Serverless Frameworks. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23). USENIX Association, Boston, MA, 301–
314. https://www.usenix.org/conference/atc23/presentation/song

[44] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E.
Gonzalez, Joseph M. Hellerstein, and Jose M. Faleiro. 2020. A Fault-
Tolerance Shim for Serverless Computing. In Proceedings of the Fif-
teenth European Conference on Computer Systems (EuroSys ’20).

[45] Xiaoyang Sun, Chunming Hu, Renyu Yang, Peter Garraghan, Tianyu
Wo, Jie Xu, Jianyong Zhu, and Chao Li. 2018. ROSE: Cluster Resource
Scheduling via Speculative Over-Subscription. In 2018 IEEE 38th Inter-
national Conference on Distributed Computing Systems (ICDCS). 949–
960. https://doi.org/10.1109/ICDCS.2018.00096

[46] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: The next Generation. In Proceedings of the Fifteenth
European Conference on Computer Systems (EuroSys ’20). Article 30,
14 pages.

[47] AoWang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020.
InfiniCache: Exploiting Ephemeral Serverless Functions to Build a
Cost-Effective Memory Cache. In USENIX FAST.

[48] Michal Wawrzoniak, Ingo Müller, Rodrigo Bruno, and Gustavo Alonso.
2021. Boxer: Data Analytics on Network-enabled Serverless Platforms.
In CIDR.

[49] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS
in the Wild: Workload Analysis and Scheduling in Large-Scale Het-
erogeneous GPU Clusters. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). 945–960.

[50] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar
Weippl. 2019. From Hack to Elaborate Technique—A Survey on Binary
Rewriting. ACM Comput. Surv. 52, 3, Article 49 (jun 2019), 37 pages.
https://doi.org/10.1145/3316415

[51] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein.
2018. Anna: A KVS for Any Scale. In ICDE.

[52] Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. 2019.
Autoscaling Tiered Cloud Storage in Anna. PVLDB (2019).

[53] Chengliang Zhang, Minchen Yu,WeiWang, and Feng Yan. 2019. MArk:
Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine
Learning Inference Serving. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19).

[54] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and
Vincent Liu. 2020. Fault-tolerant and transactional stateful serverless
workflows. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). 1187–1204.

[55] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. 2020.
Kappa: A Programming Framework for Serverless Computing. In
Proceedings of the 11th ACM Symposium on Cloud Computing (SoCC
’20). 328–343.

13

https://www.usenix.org/conference/nsdi23/presentation/liu-david
https://www.usenix.org/conference/nsdi23/presentation/liu-david
https://doi.org/10.1109/BigData.2017.8258257
https://doi.org/10.1109/BigData.2017.8258257
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/3593856.3595893
https://www.usenix.org/conference/atc23/presentation/song
https://doi.org/10.1109/ICDCS.2018.00096
https://doi.org/10.1145/3316415

[56] Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang,
and Haibo Chen. 2023. BeeHive: Sub-Second Elasticity for Web Ser-
vices with Semi-FaaS Execution. In Proceedings of the 28th ACM In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (Vancouver, BC, Canada)

(ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 74–87. https://doi.org/10.1145/3575693.3575752

14

https://doi.org/10.1145/3575693.3575752

	1 Introduction
	2 The elasticity dream: are we there yet?
	2.1 Virtual Machine and Container Elasticity
	2.2 Ephemeral Elasticity
	2.3 Incompatible Datacenter Execution Models

	3 System Requirements and Assumptions
	4 Boxer System Design
	4.1 Design Overview
	4.2 Intercepting the guest application execution
	4.3 Emulating the network-of-host model

	5 System Implementation
	5.1 Container Orchestration with Boxer

	6 Evaluation
	6.1 Microbenchmarks
	6.2 Running DeathStarBench on Boxer
	6.3 Elastic Fault Tolerance in Zookeeper

	7 Discussion
	8 Related Work
	9 Conclusion
	References

